Semantic Similarity Identification for Short Text Fragments

Ескіз

Дата

2019

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

The paper contains review of the existing methods for semantic similarity identification, such as methods based on the distance between concepts and methods based on lexical intersection. We proposed a method for measuring the semantic similarity of short text fragment, i.e. two sentences. Also, we created corpus of mass-media text. It contains articles of Kharkiv news, that were sorted by their source and date. Then we annotated texts. We defined semantic similarity of sentences manually. In this way, we created learning corpus for our future system.

Опис

Ключові слова

semantic similarity, short text fragments, orpus of mass-media text, automatic identification

Бібліографічний опис

Chuiko V. Semantic Similarity Identification for Short Text Fragments [Electronic resource] / V. Chuiko, N. Khairova // Computational linguistics and intelligent systems (COLINS 2019) : proc. of the 3d Intern. Conf., April 18-19, 2019. Vol. 2: Workshop / ed.: V. Lytvyn [et al.]. – Electron. text data. – Lviv, 2019. – P. 57-59. – URL: http://colins.in.ua/wp-content/uploads/2019/12/colins_2019_57-59.pdf, free (accessed 11.12.2020).

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced