Semantic Similarity Identification for Short Text Fragments
dc.contributor.author | Chuiko, Viktoriia | en |
dc.contributor.author | Khairova, N. F. | en |
dc.date.accessioned | 2020-12-11T12:58:01Z | |
dc.date.available | 2020-12-11T12:58:01Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The paper contains review of the existing methods for semantic similarity identification, such as methods based on the distance between concepts and methods based on lexical intersection. We proposed a method for measuring the semantic similarity of short text fragment, i.e. two sentences. Also, we created corpus of mass-media text. It contains articles of Kharkiv news, that were sorted by their source and date. Then we annotated texts. We defined semantic similarity of sentences manually. In this way, we created learning corpus for our future system. | en |
dc.identifier.citation | Chuiko V. Semantic Similarity Identification for Short Text Fragments [Electronic resource] / V. Chuiko, N. Khairova // Computational linguistics and intelligent systems (COLINS 2019) : proc. of the 3d Intern. Conf., April 18-19, 2019. Vol. 2: Workshop / ed.: V. Lytvyn [et al.]. – Electron. text data. – Lviv, 2019. – P. 57-59. – URL: http://colins.in.ua/wp-content/uploads/2019/12/colins_2019_57-59.pdf, free (accessed 11.12.2020). | en |
dc.identifier.orcid | https://orcid.org/0000-0002-4393-3260 | |
dc.identifier.orcid | https://orcid.org/0000-0002-9826-0286 | |
dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/49772 | |
dc.language.iso | en | |
dc.subject | semantic similarity | en |
dc.subject | short text fragments | en |
dc.subject | orpus of mass-media text | en |
dc.subject | automatic identification | en |
dc.title | Semantic Similarity Identification for Short Text Fragments | en |
dc.type | Thesis | en |
Файли
Контейнер файлів
1 - 1 з 1
- Назва:
- Chuiko_Semantic_similarity_2019.pdf
- Розмір:
- 408.88 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 11.25 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: