Handwriting Recognition Methods and Approaches

dc.contributor.authorBodnia, Yevhen
dc.contributor.authorKozulia, Mariia
dc.date.accessioned2024-02-15T19:23:59Z
dc.date.available2024-02-15T19:23:59Z
dc.date.issued2020
dc.description.abstractThe paper analyzes the existing methods and approaches for character recognition. The subject area and its problems are considered. The best method for solving the handwriting recognition task is the convolutional neural network method. Features of software implementation of convolutional neural network, implementation of data storage model for training are considered.
dc.identifier.citationBodnia Y. Handwriting Recognition Methods and Approaches [Electronic resource] / Y. Bodnia, M. Kozulia // Computational Linguistics and Intelligent Systems (COLINS 2020) : proc. of the 4th Intern. Conf., April 23-24, 2020. Vol. 2. – Electronic text data. – Lviv, 2020. – P. 251-253. – Access mode: https://colins.in.ua/wp-content/uploads/2020/06/preface_colins_volume2_2020_part6.pdf, free (date of the application 15.02.2024.).
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/74155
dc.language.isoen
dc.subjectcharacter recognition
dc.subjectneural network
dc.subjectrecognition methods
dc.subjectconvolutional network
dc.subjectdata models
dc.titleHandwriting Recognition Methods and Approaches
dc.typeArticle

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Bodnia_Handwriting_recognition_2020.pdf
Розмір:
240.88 KB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: