Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering
dc.contributor.author | Lyubchyk, Leonid | en |
dc.contributor.author | Galuza, Oleksy | en |
dc.contributor.author | Grinberg, Galina | en |
dc.date.accessioned | 2018-06-21T08:50:14Z | |
dc.date.available | 2018-06-21T08:50:14Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The proposed preference learning on clusters method allows to fully realizing the advantages of the kernel-based approach. While the dimension of the model is determined by a pre-selected number of clusters and its complexity do not grow with increasing number of observations. Thus real-time preference function identification algorithm based on training data stream includes successive estimates of cluster parameter as well as average cluster ranks updating and recurrent kernel-based nonparametric estimation of preference model. | en |
dc.identifier.citation | Lyubchyk L. M. Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering / L. M. Lyubchyk, A. A. Galuza, G. L. Grinberg // Системний аналiз та iнформацiйнi технологiї = System analysis and information technology : матерiали 19-ї Мiжнар. наук.-техн. конф. SAIT 2017, 22-25 травня 2017 р. – Київ : ННК "IПСА" НТУУ "КПI iм. Iгоря Сiкорського", 2017. – С. 12. | en |
dc.identifier.orcid | https://orcid.org/0000-0002-0774-5414 | |
dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/36819 | |
dc.language.iso | en | |
dc.publisher | ННК "IПСА" НТУУ "КПI iм. Iгоря Сiкорського" | uk |
dc.subject | preference function | en |
dc.subject | kernel machine | en |
dc.subject | clustering | en |
dc.subject | ranking learning | en |
dc.title | Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering | en |
dc.type | Thesis | en |
Файли
Контейнер файлів
1 - 1 з 1
- Назва:
- Lyubchyk_Ranking_model_2017.pdf
- Розмір:
- 294.5 KB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 11.25 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: