On a property of pairs of almost periodic zero sets
Дата
2015
ORCID
DOI
doi.org/10.15330/ms.43.1.43-50
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
ВНТЛ-Класика
Анотація
Whenever all differences of zeros of two holomorphic almost periodic functions in a strip form a discrete set, then both functions are infinite products of periodic functions with commensurable periods. In particular, the result is valid for some classes of Dirichlet series.
Доказано, что если множество разностей нулей двух голоморфных почти периодических функций в полосе дискретно, то обе функции являются бесконечным произведением периодических функций с соизмеримыми периодами. В частности, результат справедлив для некоторых классов рядов Дирихле.
Доказано, что если множество разностей нулей двух голоморфных почти периодических функций в полосе дискретно, то обе функции являются бесконечным произведением периодических функций с соизмеримыми периодами. В частности, результат справедлив для некоторых классов рядов Дирихле.
Опис
Ключові слова
quasipolynomial, periodic function, zero set, Dirichlet series, almost periodic holomorphic function
Бібліографічний опис
Favorov S. Yu. On a property of pairs of almost periodic zero sets / S. Yu. Favorov, N. P. Girya // Математичнi Студiї = Matematychni Studii. – 2015. – T. 43, № 1. – С. 43-50.