Нейромережевий метод інтелектуальної обробки мультиспектральних зображень
Дата
2017
DOI
10.20998/2522-9052.2017.2.07
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Наіональний технічний університет "Харківський політехнічний інститут"
Анотація
Предметом вивчення в статті є нейромережеві методи розпізнавання об'єктів на мультиспектральних даних дистанційного зондування Землі (ДЗЗ). Мета – забезпечення автоматичного розпізнавання об'єктів незаконного використання природних ресурсів на мультиспектральних зображеннях ДЗЗ. Задача – формулювання методу інтелектуальної обробки даних ДЗЗ, який реалізує автоматичне розпізнавання об'єктів незаконного використання природних ресурсів на мультиспектральних зображеннях ДЗЗ за допомогою використання згорткової нейронної мережі. Аналіз проблем методів та алгоритмів обробки мультиспектральних аерокосмічних зображень показав, що найбільш перспективно використовувати гнучкі алгоритми, які пристосовуються до зміни умов спостереження об'єктів пошуку. Однією з перспективних технологій реалізації таких алгоритмів є застосування нейронних мереж. Вибір згорткових нейронних мереж для вирішення задачі розпізнавання пов'язаний із здатністю даних мереж, за умови коректного навчання, до розпізнавання об'єктів в складних умовах спостереження та при деформації об'єкта, що спостерігається. Висновки. Запропоновано нейромережевий метод інтелектуальної обробки мультиспектральних зображень. Розглянуто алгоритм побудови даної мережі, обрано практичну область застосування запропонованого методу і показані результати роботи його програмної реалізації. Отримані результати дозволили зробити висновок про працездатність запропонованого алгоритму та є підґрунтям для подальших досліджень з розробки та реалізації алгоритмів обробки мультиспектральних знімків у системах дистанційного зондування землі.
The subject of the study in the article is the neural network method of object recognition on multispectral Earth remote sensing (ERS). The goal providing automatic recognition of objects illegal exploitation of natural resources in multispectral ERS images. The taskis formulation of the method of intellectual processing of ERS data, which implements automatic recognition of objects of illegal use of natural resources on multispectral ERS images by using a convolutional neural network. Analysis of the problems of methods and algorithms for processing multispectral aerospace images has shown that it is most promising to use flexible algorithms that adapt to changing conditions for observing search objects. One of the most promising technologies of the implementation of such algorithms is the use of neural networks. The selection of convolutional neural networks for solving the recognition problem is related to the ability of these networks, under the condition of correct training, to recognize objects under difficult observation conditions and when the observed object. Conclusions: the neural network method of intellectual processing of multispectral images is proposed. The algorithm for constructing this network is considered, the practical scope of the proposed method is chosen and the results of its program implementation are shown. The obtained results made it possible to conclude that the proposed algorithm is working and are the basis for further research into the development and implementation of processing algorithms for multispectral imagesin ERS systems.
The subject of the study in the article is the neural network method of object recognition on multispectral Earth remote sensing (ERS). The goal providing automatic recognition of objects illegal exploitation of natural resources in multispectral ERS images. The taskis formulation of the method of intellectual processing of ERS data, which implements automatic recognition of objects of illegal use of natural resources on multispectral ERS images by using a convolutional neural network. Analysis of the problems of methods and algorithms for processing multispectral aerospace images has shown that it is most promising to use flexible algorithms that adapt to changing conditions for observing search objects. One of the most promising technologies of the implementation of such algorithms is the use of neural networks. The selection of convolutional neural networks for solving the recognition problem is related to the ability of these networks, under the condition of correct training, to recognize objects under difficult observation conditions and when the observed object. Conclusions: the neural network method of intellectual processing of multispectral images is proposed. The algorithm for constructing this network is considered, the practical scope of the proposed method is chosen and the results of its program implementation are shown. The obtained results made it possible to conclude that the proposed algorithm is working and are the basis for further research into the development and implementation of processing algorithms for multispectral imagesin ERS systems.
Опис
Ключові слова
дистанційне зондування Землі, обробка зображень, нейромережа, згорткова нейронна мережа, мультиспектральні зображення, earth remote sensing, image processing, neural network, convolutional neural network, multispectral images
Бібліографічний опис
Любченко Н. Ю. Нейромережевий метод інтелектуальної обробки мультиспектральних зображень / Н. Ю. Любченко, А. О. Подорожняк, В. К. Бондарчук // Сучасні інформаційні системи = Advanced Information Systems. – 2017. – Т. 1, № 2. – С. 39-44.