Кафедра "Хімічна техніка та промислова екологія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7479
Офіційний сайт кафедри http://web.kpi.kharkov.ua/htpe
Від 1999 року кафедра має назву "Хімічна техніка та промислова екологія", попередня назва – кафедра механічного устаткування хімічних виробництв.
Кафедра механічного устаткування хімічних виробництв була організована 18 жовтня 1946 року у складі факультету технології неорганічних речовин Харківського хіміко-технологічного інституту. Становлення кафедри пов’язане з іменами доцентів Георгія Веніаміновича Петрова, М. Ковальова, Абрама Натановича Цейтліна, Анісіма Рудольфовича (Рувиновича) Ястребнецького . У 1960 році на базі кафедри створено Факультет хімічного машинобудування.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 14 кандидатів технічних наук, 4 доктора філософії; 3 співробітника мають звання професора, 12 – доцента.
Переглянути
Результати пошуку
Документ Sustainable development(National technical university "Kharkiv polytechnical institute", 2022) Tykhomyrova, T. S.; Sebko, V. V.; Babenko, V. M.The tutorial presents the main goals and indicators of sustainable development, their application in Ukraine and posobility for the development. Contains words clouds for easy memorising.Документ Identification of the eddy current method features in the implementation of computer simulation algorithms for controlling the characteristics of the food production equipment parts(World academy of materials and manufacturing engineering, 2019) Zashchepkina, N. M.; Zdorenko, V. G.; Sebko, V. V.; Markina, O. M.Purpose: The purpose of this article is to study the theoretical provisions of the operation of a vortex device in the implementation of a non-contact method of controlling the details of brewing equipment using computer simulation algorithms. Design/methodology/approach: The theoretical positions of thermal ECT operation with a copper product are obtained, which is controlled while maintaining a constant value of the magnetic field frequency f1 = 70.0 Hz, with small values of the generalized parameter x≤1.1 and increasing the parameter x due to the increase in the frequency of thermal ECT, that is, at x≥3.5. Findings: On the basis of computer simulation algorithms the results of the joint measuring control of diameter d, electrical resistance ρ and temperature t of the sample made of copper (in the temperature range from 20-160°C) and the results of determination of thermally dependent thermal ECT signals with the sample of equipment details and the values of specific normalized values that relate the ECT signals to the physical and mechanical characteristics of the samples of the equipment being monitored. Research limitations/implications: Product diameters range is 5 mm to 50 mm. The lower boundary is limited by the frequency of the magnetic field f = 20 Hz and the upper boundary by the diameter of the frame of the thermal eddy current transformer transducer is 50 mm. Perspective positions of work require further development in the direction of extending the limits of control of geometrical parameters of the samples due to the use of automated control systems based on overhead eddy current transformer transducers. Practical implications: The practical value of the work is to increase the overall likelihood of control of the parameters of brewing equipment parts by increasing its instrumental component Di, due to the reduction of measurement errors due to instrumental techniques and on the basis of computer modelling algorithms for three-parameter control of parts of brewing equipment, electrical and temperature parameters, allows to obtain the value of the overall control probability Dz = 0.998. Originality/value: The originality of the article is the study of the theoretical provisions of the eddy current transformer transducer and the implementation of a non-contact method of controlling the details of brewing equipment using computer simulation algorithms that take into account the modes of joint three-parameter control: at high values of the generalized parameter x (with three-parameter surface control), at small values of x (while controlling the value of the average cross section geometry, electrical, temperature settings) at a fixed frequency magnetic field (get information on the diameter d, resistivity ρ and temperature t with a certain depth of penetration of the magnetic field in the sample Δ).Документ Informative testing method of beer sewage samples for mini-breweries(World academy of materials and manufacturing engineering, 2020) Pyrozhenko, Ye. V.; Sebko, V. V.; Zdorenko, V. G.; Zashchepkina, N. M.; Markina, O. M.Purpose: of the article is to investigate the theoretical rules of thermal transformer eddy current converter (TTC) during the preparation of ecological monitoring of brewery sewage samples based on the implementation of contactless two-parameter eddy current method of testing of the specific electrical conductivity λt and the temperature t of the beer sewage sample. It should be noted that this makes it possible to simultaneously prevent the causes of beer sewage samples deviation from the specified environmental safety indicators and to take adjustments. Design/methodology/approach: The theory of TTC operation concerning the electrical and temperature characteristics testing of beer sewage samples has been further developed by implement new universal transformation functions ∆φt = f (Gt) and ∆φ = f (xt), which relate the normalized difference components of the converter signals to physical and chemical characteristics of the sample. Due to this, it is possible to simultaneously prevent the causes of beer sewage samples deviation from the specified ecological safety indicators and to take appropriate adjustments. Findings: The method of two-parameter measuring test of the specific electrical conductivity λt and the temperature t of the beer sewage sample was developed on the basis of new universal transformation functions. Analysing the numerical data of electrical conductivity λ, TDS and pH at the initial temperature t1 = 15°C, the alkaline nature of beer sewage was determined. Research limitations/implications: The frequency range of the magnetic field f = 80-100 MHz, it is difficult to maintain in laboratory conditions, so the proposed method requires the use of modern high-frequency equipment, the radius of the probe depends on the radius of the primary converter frame. And therefore is quite a complicate to find appropriate tank. Practical implications: is to determine the nature of beer sewage based on the results of electrical and temperature parameters measurements during implementing a two-parameter eddy current method, which allows to prevent the reasons for beer sewage samples deviations from the specified environmental safety measures and to take appropriate adjustments. An important practical result is also the determination of the signal components and the normalized characteristics of the primary eddy current converter with a sample of beer sewage. They allow to calculate, design and create multi-parameter automated devices for measuring test of the physicochemical parameters of beer sewage samples. In turn, as a result of the physicochemical composition analysis of the sample, improving the accuracy of measurements of physicochemical parameters - there is an opportunity to improve and create advanced methods of wastewater purification on a weak electrolytic basis. Originality/value: The article originality is the investigation of the theoretical rules of thermal TTC by implementing a new multi-parameter eddy current method of measuring the specific electrical conductivity λt and the temperature t of the beer sewage sample based on the implementation of universal transformation functions ∆φt = f (Gt) and ∆φ = f (xt) that relate the converter signals to the physicochemical characteristics of the beer sewage sample, which helps to prevent the causes of the beer sewage samples deviation from the specified environmental safety indicators and take appropriate adjustments.