Кафедра "Промислова і біомедична електроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5397

Офіційний сайт кафедри http://web.kpi.kharkov.ua/pbme

Від 2000 року кафедра має назву "Промислова і біомедична електроніка", первісна назва – "Промислова електроніка".

Кафедра "Промислова електроніка" виділилася як самостійна одиниця 9 жовтня 1963 року внаслідок розділу кафедри електрифікації промислових підприємств на дві самостійні. Ведення навчального процесу з дисципліни "Промислова електроніка" раніше було доручено кафедрі електрифікації промислових підприємств, де цю роботу очолив талановитий педагог та дослідник Олег Олексійович Маєвський.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут". Усього за шістьдесят років було підготовлено 8 докторів та 65 кандидатів технічних наук.

У складі науково-педагогічного колективу кафедри працюють: 3 доктора технічних наук, 13 кандидатів технічних наук; 3 співробітника мають звання професора, 11 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Modeling of security systems for critical infrastructure facilities
    (PC Technology Center, 2022) Yevseiev, Serhii; Hryshchuk, Ruslan; Molodetska, Kateryna; Nazarkevych, Mariia; Hrytsyk, Volodymyr; Milov, Oleksandr; Korol, Olha; Milevskyi, Stanislav; Korolev, Roman; Pohasii, Serhii; Tkachov, Andrii; Melenti, Yevgen; Lavrut, Oleksandr; Havrylova, Alla; Herasуmov, Serhii; Holotaistrova, Halyna; Avramenko, Dmytro; Vozniak, Roman; Voitko, Oleksandr; Yerhidzei, Kseniia; Mykus, Serhii; Pribyliev, Yurii; Akhiiezer, Olena; Shyshkin, Mykhailo; Opirskyy, Ivan; Harasymchuk, Oleh; Mykhaylova, Olha; Nakonechnyy, Yuriy; Stakhiv, Marta; Tomashevsky, Bogdan
    The development of Industry 4.0 technologies is based on the rapid growth of the computing capabilities of mobile wireless technologies, which has made it possible to significantly expand the range of digital services and form a conglomeration of socio-cyber-physical systems and smart technologies. The First Section discusses the issues of building security systems based on the proposed Concept of multi-contour security systems, taking into account the hybridity and synergy of modern targeted cyber-attacks, their integration with social engineering methods. This approach not only increases the level of security, but also forms an objective approach to the use of post-quantum security mechanisms based on the proposed Lotka-Volterra models. The Second Section analyzes the features of the functioning of social Internet services and establishes their role in ensuring the information security of the state. An approach is proposed to identify signs of threats in the text content of social Internet services, which will allow to quickly respond to changing situations and effectively counteract such threats. A classifier of information security profiles of users of social Internet services has been developed to assess the level of their danger as potential participants in disinformation campaigns. A method for identifying and evaluating the information and psychological impact on user communities in services is proposed. Models of conflict interaction of user groups in social Internet services are considered on the example of civil movements. To effectively counter threats to information security of the state, it is proposed to use the concept of synergistic user interaction and self-organization processes in a virtual community. Particular attention is paid to countering the manipulation of public opinion in the decision-making process by users of social Internet services. The Third Section proposes a biometric security system that works to authenticate users based on a comparison of their fingerprints and certain templates stored in a biometric database. A method for determining the contour based on the passage of a curve and the filtering function of contour lines has been developed. The stage of skeletal identification is analyzed in detail. The Ateb-Gabor method with wave thinning has been developed. The performance of skeletal algorithms such as the Zhang-Suen thinning algorithm, the Hilditch algorithm, and the Ateb-Gabor method with wave decimation is analyzed. The presented results of experiments with biometric fingerprints based on the NIST Special Database 302 database showed the effectiveness of the proposed method. The software and firmware were developed using the Arduino Nano.
  • Ескіз
    Документ
    Use of triangular models of non-stationary processes in modeling variability of heart rhythm
    (Харківський національний університет радіоелектроніки, 2019) Akhiiezer, O. B.; Dunaievska, О. I.; Shyshkin, Mykhailo; Butova, Olha; Rohovyi, Anton
    The subject matter is a mathematical model describing the process of heart rhythm variability, which is based on the use of triangular models of non-stationary random processes in the Hilbert space. The goal of the research is to develop a mathematical model of nonstationary processes of cardiac activity based on a triangular model. This research was the basis for the development of a Matlab model that implements the proposed method for analyzing heart rate variability. Tasks are: to give a description of the variability heart rate as a non-stationary process in Hilbert space in terms of correlation functions; to research the possibility of constructing a correlation and spectral theory of a non-stationary process using triangular models; to synthesize the mathematical model of nonstationary process on the basis of correlation theory for solving mathematical processing and forecasting tasks on the basis of ECG data. Using the proposed mathematical method, we implemented the Matlab model of a heart signal generator, which allowed us to synthesize an ECG with different variability parameters in noisy conditions. Methods of mathematical statistics, simulation modeling, theory of random processes and control theory are used in this work. Results of this research are as follows: 1) It has been shown that the new approach to the description of the HRV as a random process in the application of the triangular model in the Hilbert space made it possible to obtain expressions for the correlation function. 2) The imitation simulation showed the sensitivity of the method within the 5% error rate under the conditions of different types of influence on HRV. The qualitative assessment of the possibilities of the proposed models to generate artificial ECG provided the possibility of visual analysis by the cardiologist of the identity of the interpretation of real ECG records. The identities of modeling results were checked on time samples of electrocardiographs of 7 patients from open PhysioNet cardiographic libraries on samples with the duration T = 10 s. 3) The standard low-frequency oscillations and "white noise" barrier are clearly differentiated on the applied correlation function by the distribution of spectral density power within the frequency range of 0,15-0,3 Hz. Conclusion. The simulation results confirmed the correctness of the theoretical conclusions about the possibility of using models based on the representation of non-stationary processes in a triangular Hilbert space.