Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Динамічний аналіз функціонально-градієнтних пористих сигмовидних сендвич пластин
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Тимченко, Галина Миколаївна
    В роботі розглянуто проблему дослідження вільних коливань функціонально-градієнтних (ФГ) пористих сигмовидних пластин типу сендвіч, які можуть мати складну геометричну форму та різні типи закріплення. Для розв'язання поставленої задачі використано варіаційно-структурний метод (RFM), який поєднує теорію R-функцій та варіаційний метод Релея-Рітца. Математичну постановку задачі виконано в рамках деформаційної теорії пластин першого порядку(FSDT. Розглянуто пластини, зовнішні шари яких вироблено із функціонально-градієнтних матеріалів (ФГМ), а заповнювач є ізотропним. Для різних моделей розподілення пор (сигмовидне рівномірне та нерівномірне) виведені формули для обчислення ефективних властивостей ФГМ. Числові результати для прямокутних пластин порівняно з відомими результатами, отриманими за допомогою інших методів. Досліджено власні коливання пластин зі складною формою плану. Отримані результати представлені у вигляді таблиць та графіків. Проаналізовано вплив об’ємної долі кераміки, різних видів ФГМ та коефіцієнту пористості на власні частоти коливань пластини.
  • Ескіз
    Документ
    Нелінійні коливання функціонально-градієнтних пологих оболонок зі складною формою плану
    (Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, 2014) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна
    First RFM(method of R-functions) is extended to the study of geometrically nonlinear free vibrations of shallow shells with complex shapes plan. Appropriate software was developed and tested on the test problems as well as used to solve new problems.