Кафедра "Програмна інженерія та інтелектуальні технології управління ім. А. В. Дабагяна"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1665

Офіційний сайт кафедри http://web.kpi.kharkov.ua/asu

Від січня 2022 року кафедра має назву "Програмна інженерія та інтелектуальні технології управління ім. А. В. ДАБАГЯНА" (тоді ж, у січні 2022 року в окремий підрозділ виділилася кафедра "Інформаційні системи та технології"), попередні назви – "Програмна інженерія та інформаційні технології управління" (від 2015), "Автоматизовані системи управління" (від 1977); первісна назва – кафедра автоматичного управління рухом.

Кафедра автоматичного управління рухом заснована в 1964 році задля підготовки інженерів-дослідників у галузі автоматичного управління рухом з ініціативи професора Харківського політехнічного інституту Арега Вагаршаковича Дабагяна та генерального конструктора КБ "Електроприладобудування" Володимира Григоровича Сергєєва.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 4 доктора технічних наук; 24 кандидата наук: 22 – технічних, 1 – фізико-математичних, 1 – економічних, 1 – доктор філософії; 3 співробітників мають звання професора, 19 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Studying items similarity for dependable buying on electronic marketplaces
    (2018) Cherednichenko, Olga; Vovk, Maryna Anatoliivna; Kanishcheva, Olga; Godlevskyi, Mikhail
    The processing of product buying is a very difficult task when we have thousands of items in each market category. In order to study items similarity for dependable buying we try to analyze item descriptions on AliExpress, eBay marketplaces and test k-means algorithm for item grouping/product segmentation. The usage of the classical clusterization algorithms for grouping similar products according to their descriptions is studied. A corpus of different products (bikes and smartphones) from e-shop AliExpress, eBay is developed. Each entity in this corpus contains photos and a product description. Each entity in this corpus contains product description with different fields. These short texts are used for experiments. As a result, it is found out that the k-means algorithm works well only for uniformly distributed data by categories, but this is not suitable for the segmentation of heterogeneous descriptions. The task of item descriptions systematization is set in the research below.