Кафедра "Математичне моделювання та інтелектуальні обчислення в інженерії"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1366
Офіційний сайт кафедри http://web.kpi.kharkov.ua/dpm
Від 2022 року кафедра має назву "Математичне моделювання та інтелектуальні обчислення в інженерії", первісна назва – "Динаміка та міцність машин".
Iсторія кафедри починається в 1930 році, коли в нашому університеті, що називався тоді Харківський механіко-машинобудівний інститут, була створена спеціальність "Динаміка і міцність машин".
Засновниками спеціальності були видатні вчені: академіки Йоффе Абрам Федорович, Обреїмов Іван Васильович, Синельников Кирило Дмитрович, професор Бабаков Іван Михайлович. В різні роки кафедрою завідували: член-корреспондент АН УРСР Майзель Вениамин Михайлович (1936-1941); академік АН УРСР Філіппов Анатолій Петрович (1948-1960), професор, доктор технічних наук, лауреат Державної премії України Богомолов Сергій Іванович (1960-1991); професор, доктор технічних наук, академік АН вищої школи України Львов Геннадій Іванович (1992-2020). Від 2020 року і по теперішній час завідувач кафедри – лауреат премії Президента України для молодих вчених за видатні досягнення, доцент, кандидат технічних наук Водка Олексій Олександрович.
Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут". Наукова школа з динаміки і міцності машин, створена в нашому університеті, широко відома у світі.
У складі науково-педагогічного колективу кафедри працюють; 2 доктора технічних наук, 7 кандидатів технічних наук, 1 доктор філософії; 2 співробітника мають звання професора, 5 – доцента.
Переглянути
Фільтри
Налаштування
Результати пошуку
Публікація Application of computational intelligence methods for the heterogeneous material stress state evaluation(Національний університет "Одеська політехніка", 2022) Babudzhan, Ruslan A.; Vodka, Oleksii O.; Shapovalova, Mariia I.The use of surrogate models provides great advantages in working with computer-aided design and 3D modeling systems, which opens up new opportunities for designing complex systems. They also allow us to significantly rationalize the use of computing power in automated systems, for which response time and low energy consumption are critical. This work is devoted to the creation of a surrogate model for approximating the finite element solution of the problem of dispersion–strengthened composite plane sample deformation. An algorithm for constructing a parametric two–dimensional model of a composite is proposed. The calculation model is created using the ANSYS Mechanical computer-aided design and analysis program using the APDL scripting model builder. The parameters of the stress-strain state of the material microstructure are processed using a convolutional neural network. A neural network based on the U–Net architecture of the encoder-decoder type has been created to predict the distribution of equivalent stresses in the material according to the sample geometry and load values. A direct sequence of layers is taken from the specified architecture. To increase the speed and stability of training, the type of part of the convolutional layers has been changed. The architecture of the network consists of serially connected blocks, each of which combines layers such as convolution, normalization, activation, subsampling, and a latent space that connects the encoder and decoder and adds load data. To combine the load vector, such a neural network architecture as a concatenator is created, which additionally includes the Dense, Reshape and Concatenate layers. The model loss function is defined as the root mean square error over all points of the source matrix, which calculates the difference between the actual value of the target variable and the value generated by the surrogate model. Optimization of the loss function is performed using the first–order gradient local optimization method ADAM. The study of the model learning process is illustrated by plots of loss functions and additional metrics. There is a tendency for the indicators to coincide between the training and validation sets, which indicates the generalizing capability of the model. Analyzing the output of the model and the value of the metrics, a conclusion is made about the sufficient quality of the model. However, the values of the network weights after training are still not optimal in terms of minimizing the loss function. And also, to accurately reproduce the solution of the finite element method (FEM), the proposed model is quite simple and requires clarification. The speed comparison of obtaining results by the FEM and using the architecture of the neural network is proposed. The surrogate model is significantly ahead of the FEM and is used to speed up calculations and determine the overall quality of the approximation of problems of mechanics of this type.Публікація Методичні вказівки до лабораторної роботи "Згинні коливання пластин"(Національний технічний університет "Харківський політехнічний інститут", 2020) Водка, Олексій Олександрович; Трубаєв, Олександр Іванович; Ульянов, Юрій Миколайович; Місюра, Сергій ЮрійовичМетодичні вказівки призначені для виконання лабораторної роботи з курсу «Динаміка машин» для здобувачів спеціальності 113 «Прикладна математика». У методичних вказівках розглянуто згинні коливання круглої і квадратної пластин. Методом скінченних елементів розраховано частоти та форми коливань пластин вказаного класу. Експериментально визначені частоти і форми вільних коливань круглої і квадратної пластин. Проведене порівняння результатів двома методами, що показало хорошу збіжність отриманих частот. Реалізовані підходи дають можливість досліджувати динамічні характеристики пластин інших конфігурацій і можуть бути використані для оцінки точності інших підходів.Документ Чисельне та експериментальне дослідження конічного з'єднання лопатки роторної машини(Національний технічний університет "Харківський політехнічний інститут", 2023) Мартиненко, Володимир ГеннадійовичВ роботі представлене експериментальне та чисельне дослідження конічного кріплення хвоста алюмінієвої лопатки вентилятора головного провітрювання шахти, що засновується на випробуваннях спрощеної натурної моделі з відкинутим пером та її подальшому скінченно-елементному аналізі. Розрахункова модель враховує пружнопластичні властивості матеріалів та нелінійні контакти із тертям. Запропоноване з'єднання складається з алюмінієвого конічного хвоста лопатки, двох сталевих фіксаторів із аналогічними конічними поверхнями та двох сталевих болтів, які поєднують фіксатори навколо хвоста. Попередня затяжка болтів дозволяє зафіксувати лопатку в ненавантаженому стані у гнізді та запобігти її небажані повороти. Така затяжка враховується в скінченно-елементному аналізі за допомогою визначення з дотриманням спеціальних правил осьової сили преднатягу болтів. За допомогою гідравлічного пресу, що діє на нижню поверхню хвоста лопатки, імітується вплив відцентрового навантаження на конічне з'єднання з боку пера лопатки. Нелінійний статичний аналіз пружнопластичної поведінки конструкції дозволяє визначити руйнівні навантаження, що спричиняють розрив болтів із подальшим роз'єднанням фіксаторів та вильотом лопатки із посадочного гнізда. Графіки еквівалентних за Мізесом напружень свідчать про те, що максимальні напруження досягаються в робочій частині болтів, що повністю відповідає характеру руйнування конструкції при досягненні максимального еквівалентного навантаження на неї. Експериментальне дослідження підтверджує коректність визначення контактних напружень в місці конічної посадки. Відповідність результатів статичного аналізу результатам натурного експерименту дає можливість зробити висновок про коректність проведеного скінченно-елементного моделювання. Це дозволяє використовувати розроблену постановку задачі для визначення міцності конструкцій вентиляторів із конічними з'єднаннями лопаток без виконання попередніх експериментальних досліджень. Окрім того, розроблена методика може бути поширена на більший круг конічних та циліндричних з'єднань завдяки простоті підходу та універсальності постановки нелінійної скінченно-елементної задачі, що моделює конструкції із попередньо навантаженими чи затягнутими елементами.Документ Аналіз вільних коливань оболонок обертання з перегородками за різні умови закріплення(Олді-Плюс, 2019) Гнітько, Василь Іванович; Розова, Людмила Вікторівна; Гармаш, А. Ю.Запропоновано новий варіант методу скінченних елементів для аналізу міцності та коливань оболонок обертання з довільним розгалуженим меридіаном. Рівняння руху оболонки за відсутності зовнішніх збурень отримано на основі принципу Остроградського – Гамільтона. Використовується теорія тонких оболонок Кірхгофа – Лява. Вектор переміщень в циліндричній системі зображено у вигляді ряду Фур'є за окружною координатою. Рівняння коливань отримано для кожної гармоніки окремо. Геометричні характеристики елементу описується за допомогою кубічних поліномів. Функції форми складають повну систему незалежних поліномів третього ступеня і є одновимірними функціями Ерміта. На основі запропонованого методу надано аналіз частот і форм коливань циліндричної оболонки з перегородкою за різні умови закріплення.Документ Оцінка залишкової міцності криволінійної ділянки трубопроводу зі статистично заданим корозійним дефектом, що розвивається у часі(Луцький національний технічний університет, 2017) Ларін, Олексій Олександрович; Потопальська, Ксенія ЄвгенівнаВ даній роботі проводилося дослідження з оцінки впливу корозійного об’ємного дефекту на працездатність коліна трубопроводу. Розвиток дефекту моделюється у часі. Оцінка характеристик напружено-деформованого стану конструкції з пошкодженням проводилась в рамках засобів комп’ютерного моделювання з використанням методу скінченних елементів. Визначено зони, в яких є локалізація максимальних напружень в пошкодженій ділянці трубопроводу з урахуванням стохастичного характеру розвитку корозійного пошкодження та наведена оцінка його впливу на залишкову міцність конструкції в період експлуатації від 35 до 45 років.Документ Дослідження впливу кривизни пологого склопакету на спектр його власних частот та форми коливань(ТОВ "Планета-Прінт", 2021) Суханова, Ольга Ігорівна; Ларін, Олексій ОлександровичПублікація Комп'ютерні методи побудови параметричних статистично еквівалентних моделей мікроструктури високоміцного чавуну для аналізу його пружних характеристик(Видавничий дім "Гельветика", 2019) Шаповалова, Марія Ігорівна; Водка, Олексій ОлександровичАналіз мікроструктури матеріалу є однією з важливих частин контролю якості виготовленої продукції. Дослідження мікроструктури дає змогу отримати інформацію про стан матеріалу з оцінкою зображення його структури і не потребує додаткового обладнання для проведення випробувань і створення зразка. В роботі проводиться аналіз чавуну з включеннями сфероїдального графіту. Цей матеріал знайшов широке застосування у машинобудуванні. Використання високоміцного чавуну під час виробництва відповідальних вузлів: осей підвіски, шатунів, зубчастих коліс, розподільних валів, елементів гальмування – сприяє зниженню енерговитрат і здешевленню кінцевого продукту. У роботі пропонуються комп'ютерні методи побудови параметричних статистично еквівалентних моделей мікроструктури чавуну з включенням графіту сфероїдальної форми. Аналізуються металографічні зображення матеріалу засобами бібліотеки комп'ютерного бачення OpenCV. Виявляються контури, що охоплюють графітові включення у фериті. Робиться припущення, що графіт має форму кола. Проводиться апроксимація показників дисперсії та математичного очікування радіусів для знаходження залежності розмірів включень від їхньої концентрації. Ця залежність дає змогу реалізувати генерацію статистично еквівалентної штучної мікроструктури чавуну. Для знаходження пружних характеристик матеріалу будується скінчено елементна модель. Для проведення обчислень вважається, що ферит – це ізотропний матеріал, а графіт – має гексагональну структуру кристалічної решітки. Напружений стан розглядається на основі плоских моделей. Проводиться 200 чисельних експериментів для 17-ти значень різноманітних концентрацій включень. Отримані результати для пружних констант статистично усереднені, та встановлюються залежності коефіцієнта Пуассона, модуля пружності та зсуву від концентрації включень. Для оцінки достовірності отримані значення порівнюються з даними, отриманими за допомогою правила суміші. Результати застосування правила підтверджують коректність побудованих моделей. Однак верхня межа довірчого інтервалу перевищує верхню оцінку модуля пружності. Це пояснюється складністю реальних властивостей графіту, та не можливістю врахування орієнтації головних осей кристалів графіту, відповідно до правила суміші. Тому порівняння відбувається лише за середніми значеннями.Документ Порівняльний аналіз аналітичних та чисельних досліджень напружено-деформованого стану бандажованого трубопроводу з дефектом в стінці(Національний технічний університет "Харківський політехнічний інститут", 2014) Львов, Геннадій Іванович; Мартиненко, Володимир ГеннадійовичДокумент Колісна пара залізничного транспорту при технологічних і експлуатаційних навантаженнях(Національний технічний університет "Харківський політехнічний інститут", 2012) Данілов, Д. В.; Андрєєв, Арнольд ГеоргійовичДокумент Вплив умов закріплення та наявності перегородок на вільні коливання оболонок обертання(Національний технічний університет "Харківський політехнічний інститут", 2019) Розова, Людмила Вікторівна; Тишковець, Олена Вячеславівна