Кафедра "Хімічна техніка та промислова екологія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7479

Офіційний сайт кафедри http://web.kpi.kharkov.ua/htpe

Від 1999 року кафедра має назву "Хімічна техніка та промислова екологія", попередня назва – кафедра механічного устаткування хімічних виробництв.

Кафедра механічного устаткування хімічних виробництв була організована 18 жовтня 1946 року у складі факультету технології неорганічних речовин Харківського хіміко-технологічного інституту. Становлення кафедри пов’язане з іменами доцентів Георгія Веніаміновича Петрова, М. Ковальова, Абрама Натановича Цейтліна, Анісіма Рудольфовича (Рувиновича) Ястребнецького . У 1960 році на базі кафедри створено Факультет хімічного машинобудування.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 14 кандидатів технічних наук, 4 доктора філософії; 3 співробітника мають звання професора, 12 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Публікація
    Сумісний вимірювальний контроль фізико-хімічних параметрів зразка пивних стоків
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Пироженко, Євгенія Володимирівна; Себко, Вадим Вадимович; Здоренко, Валерій Георгійович; Бабенко, Володимир Миколайович; Горбунова, Ольга Володимирівна
    Запропоновано інформативний двопараметровий безконтактний вихорострумовий метод вимірювального контролю питомої електричної провідності χ та температури t зразка пивних стоків. Наведено основні співвідношення, які описують роботу теплового трансформаторного вихорострумового перетворювача (ТВП) з пробницею кислих стічних вод, що контролюється. Надано схему включення теплового ТВП зі зразком рідини, який розташовано у скляній пробниці, схема передбачає нагрівання зразка рідини у процесі двопараметрового контролю (за допомогою нагрівача, який розташовано у робочому перетворювачі), для імітації виробничих умов пивоварного виробництва. Отримано нові універсальні функції перетворення, які пов’язують компоненти сигналів теплового вихорострумового перетворювача з питомою електричною провідністю χt та температурою t зразка кислих стічних вод пивоварного виробництва, а саме залежності питомого нормованого магнітного потоку Gt від узагальненого магнітного параметра А та залежності Gt від фазового кута зсуву 2t. Одержані чисельні данні, надають змогу стверджувати про узгодження результатів вимірювань електричних та температурних параметрів контрольними методами та запропонованим двопараметровим вихорострумовим методом, на основі якого здійснюється вибір методу очищення стічних вод пивоварного виробництва. Діапазон змінення питомої електричної провідності χt складає від 9,29 См/м до 12,44 См/мв досліджуваному температурному діапазоні. Для підвищення якості готового продукту, надано рекомендації стосовно температурних пауз, які застосовують на стадії технологічного процесу, що полягає у затиранні солоду, а саме пауза 35 °С створює умови для появлення стійкої піни та триває 15–20 хвилин; пауза (55–59) °С – нормальна білкова пауза (яка не ушкоджує піну), триває від 30 хвилин; пауза 62 °С - перехідна пауза, пауза витримки продукту, триває 15–20 хвилин; пауза (63–70) °С –це пауза оцукрювання, триває від 1–15 хвилин; пауза (71–73) °С – дооцукрення, для підсилення «солодування», від 20 до 60 хвилин, пауза (75–78) °С – «інактивування» закінчення затирання, триває від 1,5 до 15 хвилин. Запропоновані температурні паузи, дозволяють отримати якісні органолептичні показники готової продукції пивоваріння та призводять до підвищення рН кислих стічних вод. Визначено нормовані характеристики вихорострумового перетворювача, тобто параметри Gt і А (при різних значеннях температури t) межі змінення яких відповідають діапазонам змінення електричних та температурних параметрів зразка кислих стічних вод. При цьому, задля удосконалення процесу очищення рекомендується додавання магнітної рідини на одному із заключних етапів фільтрації, магнітна рідина за рахунок взаємодії з пробою стічної води перетворюється у слабомагнітну, далі застосовують процес сепарації в результаті якого видаляється фракція, яка містить забруднювач та стічна вода надходить до фільтру доочищення.