Кафедра "Прикладна математика"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610
Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm
Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.
Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".
Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.
Переглянути
Результати пошуку
Документ Математичний аналіз у прикладах і задачах. Частина 1(Національний технічний університет "Харківський політехнічний інститут", 2024) Курпа, Лідія Василівна; Лінник, Ганна Борисівна; Шматко, Тетяна ВалентинівнаВ навчальному посібнику наведено стисло теоретичний матеріал, надано практичні завдання, індивідуальні домашні завдання з таких розділів математичного аналізу: теорія границь; диференціальне числення для функцій однієї змінної; невизначений інтеграл; визначений інтеграл та його застосування для розв’язання геометричних задач. Посібник містить велику кількість задач для розв’язання на практичних заняттях та вдома стосовно розглянутих тем, передбачених робочою програмою з математичного аналізу. Призначено для студентів технічних університетів, які вивчають вищу математику англійською мовою.Документ Динамічний аналіз функціонально-градієнтних пористих сигмовидних сендвич пластин(Національний технічний університет "Харківський політехнічний інститут", 2023) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Тимченко, Галина МиколаївнаВ роботі розглянуто проблему дослідження вільних коливань функціонально-градієнтних (ФГ) пористих сигмовидних пластин типу сендвіч, які можуть мати складну геометричну форму та різні типи закріплення. Для розв'язання поставленої задачі використано варіаційно-структурний метод (RFM), який поєднує теорію R-функцій та варіаційний метод Релея-Рітца. Математичну постановку задачі виконано в рамках деформаційної теорії пластин першого порядку(FSDT. Розглянуто пластини, зовнішні шари яких вироблено із функціонально-градієнтних матеріалів (ФГМ), а заповнювач є ізотропним. Для різних моделей розподілення пор (сигмовидне рівномірне та нерівномірне) виведені формули для обчислення ефективних властивостей ФГМ. Числові результати для прямокутних пластин порівняно з відомими результатами, отриманими за допомогою інших методів. Досліджено власні коливання пластин зі складною формою плану. Отримані результати представлені у вигляді таблиць та графіків. Проаналізовано вплив об’ємної долі кераміки, різних видів ФГМ та коефіцієнту пористості на власні частоти коливань пластини.Документ Вільні коливання багатошарових циліндричних панелей з функціонально-градієнтними шарами(Інститут прикладних проблем механіки і математики імені Я. С. Підстригача НАН України, 2019) Курпа, Лідія Василівна; Шматко, Тетяна ВалентинівнаThe R-functions theory and variational Ritz’s method is employed to research free vibrations of the laminated shallow shells with functionally graded layers. Mathematical formulation has used classical and Timoshenko’s theories. Created software is applied to investigate laminated FGM cylindrical shallow shells of the complex plan form and different boundary conditions. Effects of different geometrical and mechanical parameters on natural frequencies have been investigateДокумент Нелінійні коливання функціонально-градієнтних пологих оболонок зі складною формою плану(Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, 2014) Курпа, Лідія Василівна; Шматко, Тетяна ВалентинівнаFirst RFM(method of R-functions) is extended to the study of geometrically nonlinear free vibrations of shallow shells with complex shapes plan. Appropriate software was developed and tested on the test problems as well as used to solve new problems.Документ Дослідження стійкості багатошарових пластин з отворами складної форми за допомогою теорії R-функцій та варіаційних методів(Інститут прикладних проблем механіки і математики імені Я. С. Підстригача НАН України, 2018) Курпа, Лідія Василівна; Ткаченко, Вікторія Валеріївна; Шматко, Тетяна ВалентинівнаThe laminated plates with cuts of a complex form are studied with meshless approach, based on combined application of the R-functions theory and variational methods. The proposed method is developed for thin plates of an antisymeric form along thickness. Mathematical formulation is presented within the framework of classical nonlinear theory of plates using Kirgoff-Love’s hypothesis. In order to investigate the laminated plates with a complex cut and different boundary conditions, the corresponding solution structures and admissible functions were constructed. The software was developed and tested on many problems. In particular, the obtained results were compared with available ones for a cross three-layered plate with free rectangular cut. For plates with cuts of a complex form effect of different geometrical and physical parameters was stydied. Various types of fastening, geometry of the plate and different materials properties are considered. The nondimensional buckling load, instability regions and response curves are presented for plates with complex form of cut.Документ Застосування теорії R-функцій для дослідження нелінійних коливань функціонально градієнтних пологих оболонок з урахуванням температурного середовища(Інститут прикладних проблем механіки і математики імені Я. С. Підстригача, 2018) Курпа, Лідія Василівна; Шматко, Тетяна ВалентинівнаGeometrically nonlinear vibrations of FGM shallow shells of an arbitrary plan-form subjected to thermal environment are investigated with the use of R-functions theory and variational methods. Nonlinear first-order shear deformation of shallow shells is employed. Material properties are assumed to be temperature dependent and varying along the thickness direction according to Voigt’s law. The effect of the temperature rise, shell geometry, and constituent volume fraction index is examined. A comparison of the obtained results with the available ones is carried out for rectangular plates and shallow shells.Документ Аналіз геометрично нелінійних коливань функціонально-градієнтних пологих оболонок за допомогою теорії R-функцій(НТУ "ХПІ", 2015) Курпа, Лідія Василівна; Шматко, Тетяна ВалентинівнаДля дослідження геометрично-нелінійних коливань функціонально-градієнтних пологих оболонок зі складною геометричною формою пропонується метод, що суттєво базується на використанні теорії R−функцій. Математична постановка задачі виконана в рамках уточненої теорії першого порядку, яка враховує деформації зсуву. Зведення вихідної нелінійної системи диференціальних рівнянь з частинними похідними до нелінійної системи звичайних диференціальних рівнянь виконується в декілька етапів. Запропонований алгоритм реалізовано в рамках системи POLE-RL, апробовано на тестових задачах та проілюстровано на прикладах оболонок зі складною формою плану.Документ Вища математика в прикладах і задачах. Том 1(НТУ "ХПІ", 2009) Курпа, Лідія Василівна; Кашуба, Жанна Борисівна; Кириллова, Наталія Олександрівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Одинцова, Олена Володимирівна; Руднєва, Гаяне Валериківна; Столбова, Тамара Василівна; Чистіліна, Ганна Вікторівна; Шматко, Тетяна ВалентинівнаНавчальний посібник містить теоретичний довідковий матеріал з лінійної алгебри, аналітичної геометрії та математичного аналізу, а також зразки розв’язання типових задач, тестові питання та задачі, індивідуальні варіанти типових розрахунків. Призначено для студентів технічних спеціальностей