Кафедра "Інформаційні технології і системи колісних та гусеничних машин ім. О. О. Морозова"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1744

Офіційний сайт кафедри http://web.kpi.kharkov.ua/kgm

Від 2005 року кафедра має назву "Інформаційні технології та системи колісних і гусеничних машин ім. О. О. Морозова", первісна назва – кафедра "Колісні та гусеничні машини".

Кафедра "Колісні та гусеничні машини" створена 2 грудня 1972 року. Ініціатором заснування кафедри був один із творців легендарного танка Т-34, головний конструктор ряду серійних танків (Т-44, Т-54, Т-64) і їхніх модифікацій, доктор технічних наук Олександр Олександрович Морозов, першим завідувачем – доктор технічних наук, професор Віталій Прокопович Аврамов.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 4 кандидата технічних наук; 2 співробітника мають звання професора, 4 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 5 з 5
  • Ескіз
    Документ
    Чисельний аналіз контактної взаємодії тіл із поверхнями близької форми
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Грабовський, Андрій Володимирович; Ткачук, Микола Анатолійович; Дьоміна, Наталя Анатоліївна; Ткачук, Ганна Володимирівна; Іщенко, Ольга Анатоліївна; Ткачук, Микола Миколайович; Калінін, Павло Миколайович; Волошина, Ірина Олександрівна; Третяк, Владислав Володимирович; Саверська, Марія Сергіївна; Куценко, Сергій Володимирович; Льозний, Олег Сергійович
    У роботі на прикладі елементів конструкції із номінально близькими (майже співпадаючими) поверхнями описані дослідження контактної взаємодії їхніх деталей. Між елементами контактуючих деталей існує нерівномірно розподілений зазор. Від закону розподілу цього зазору залежить розподіл контактних зон та контактного тиску. Відповідно, від цього залежить напружено-деформований стан контактуючих тіл. Оскільки задача при цьому є суттєво нелінійною, то зі зростанням навантаження закони розподілу контактних зон та контактного тиску змінюються. Це різко змінює характер розв’язку порівняно із варіантом співпадіння контактуючих поверхонь. У останньому випадку розподіл контактного тиску, як установлено раніше, прямо пропорційний рівню навантажень, а зона контакту є незалежною від рівня навантажень. Отже, для реальних конструкцій, для яких неможливо позбутися відхилень від номінально співпадаючих форм, важливо враховувати вплив варіювання таких збурень на розподіл контактного тиску та на компоненти напружено-деформованого стану. Ці питання досліджені та описані у роботі на прикладі елементів штампів.
  • Ескіз
    Документ
    Розрахунково-експериментальний аналіз контактної взаємодії елементів технологічних систем
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Ткачук, Микола Анатолійович; Грабовський, Андрій Володимирович; Ткачук, Микола Миколайович; Саверська, Марія Сергіївна; Ткачук, Ганна Володимирівна; Дьоміна, Наталя Анатоліївна; Іщенко, Ольга Анатоліївна; Мосніцька, Дар’я Валеріївна; Волошина, Ірина Олександрівна; Третяк, Владислав Володимирович
    У роботі на прикладі деталей розділових штампів здійснено розрахунково-експериментальний аналіз контактної взаємодії елементів технологічних систем. З цією метою побудовані параметричні моделі системи контактуючих тіл. Паралельно здійснено чисельні та експериментальні дослідження напружено-деформованого стану і контактної взаємодії досліджуваних об’єктів. Це дає змогу установити особливості розподілу компонент напружено-деформованого стану та контактного тиску у сполученні тіл. Отримані експериментальні результати є основою для визначення параметрів скінченно-елементних моделей за критерієм точності чисельного моделювання контактної взаємодії елементів технологічних систем.
  • Ескіз
    Документ
    Обґрунтування технічних рішень гідропередач перспективних танкових трансмісій на основі моделювання контактної взаємодії кулькового поршня із біговою доріжкою
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Ткачук, Микола Миколайович; Грабовський, Андрій Володимирович; Ліпейко, Андрій Іванович; Литвин, Борис Якович; Рікунов, Олег Миколайович; Саверська, Марія Сергіївна; Ткачук, Ганна Володимирівна; Сєриков, Володимир Іванович
    З метою забезпечення високих технічних характеристик гідрооб’ємних передач для оснащення перспективних танкових трансмісій здійснено дослідження напружено-деформованого стану кулькових поршнів. Ці поршні перебувають у контактній взаємодії зі статорним кільцем. Для визначення напружено-деформованого стану кулькових поршнів розроблено скінченно-елементну модель із варійованими проектними параметрами. Для моделювання контактної жорсткості поверхневого шару введено проміжний шар із варійованим модулем пружності матеріалу. У ході досліджень варіюється також притискне зусилля кулькового поршня до бігової доріжки. На основі аналізу результатів розрахунків установлені закономірності впливу варійованих параметрів на міцність кулькових поршнів. Розроблені рекомендації стосовно підвищення рівня технічних рішень.
  • Ескіз
    Документ
    Чисельні та експериментальні дослідження напружено–деформованого стану у верстатних пристосуваннях
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Ткачук, Микола Анатолійович; Саверська, Марія Сергіївна; Грабовський, Андрій Володимирович; Ткачук, Ганна Володимирівна; Марусенко, Олексій Миколайович; Храмцова, Ірина Яківна
    У роботі наведені результати чисельних та експериментальних досліджень напружено–деформованого стану у верстатних пристосуваннях лещатного типу. Для аналізу напружено–деформованого стану застосовано метод скінченних елементів. Для експериментальної фіксації напружено–деформованого стану залучено методи статичної та динамічної інтерферометрії, а також метод голографічної інтерферометрії. Установлено, що контактний тиск концентрується у зонах прикладання зусиль від закріплюваних елементів, а також на периферії області спряження підошви пристосувань із робочим столом верстата. Визначено характер реакції напружено–деформованого стану корпуса пристосування на дію зусиль різання при фрезеруванні заготовок. Установлено, що при дії зусиль закріплення та зусиль різання відбувається перерозподіл контактного тиску у спряженні підошви пристосування та стола верстата.
  • Ескіз
    Документ
    Експериментальне дослідження контактної взаємодії кулькового поршня радіальної гідропередачі з профільованою біговою доріжкою
    (НТУ "ХПІ", 2019) Ткачук, Микола Миколайович; Грабовський, Андрій Володимирович; Ткачук, Микола Анатолійович; Хлань, Олександр Володимирович; Саверська, Марія Сергіївна; Ткачук, Ганна Володимирівна
    Експериментальні дослідження взаємодії кулькового поршня радіальної гідропередачі із біговою доріжкою здійснювалися з використанням методу контактних відбитків, орієнтованого на технологію із застосуванням чутливих до контактного тиску плівок. Результати дослідження контактної взаємодії кулькового поршня радіальної гідрооб'ємної передачі із її статорним кільцем (із біговою доріжкою складного поперечного профілю) однозначно свідчать про справедливість чисельно визначених тенденцій зміни картини розподілу контактного тиску при варіюванні форми бігової доріжки та властивостей проміжного шару. При цьому прослідковується збіжність як форми областей контакту та розподілів контактного тиску, так і характеру їх збурення при зміні тих чи інших чинників. При зміні радіуса поперечного перерізу бігової доріжки від значення, меншого за радіус поршня, до більшого відбувається поступовий перехід від двох краплевидних контактних плям до однієї гантелевидної, а надалі – до еліпсовидної. Контактний тиск при цьому змінює свій розподіл, знижуючи максимум на периферії та поступово змінюючи розташування максимуму на центральне. При цьому у геометричному центрі можливого контакту спочатку (зі зростанням критичної сили) контактний тиск нульовий, потім зростає, набуваючи локального мінімуму, а врешті – глобального максимуму (за певних параметрів геометричної форми та рівня навантаження).