Кафедра "Вища математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7491

Офіційний сайт кафедри http://web.kpi.kharkov.ua/vm

Напевно відомо, що в 1923 році в ХТІ вже була кафедра математики, а її першим керівником був Бржечка Володимир Фомич. Кафедра вищої математики є одним із найстаріших підрозділів нашого університету. Дисципліни вища математика та нарисна геометрія викладалися починаючи з 1885 року.

У джерел розробки методики викладання математики стояли найвидатніші вчені, академіки Олександр Михайлович Ляпунов, Володимир Андрійович Стеклов й інші. Колектив кафедри намагається на всіх етапах її становлення й розвитку зберігати традиції, закладені засновниками кафедри, продовжує наукову працю, розвиває закладені напрямки в сучасній математичній підготовці студентів університету. Щорічно навчаються математиці майже чотири тисячі студентів денного відділення.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут .

У складі науково-педагогічного колективу кафедри працюють: доктор фізико-математичних наук, доктор педагогічних наук, 2 доктора технічних наук, 8 кандидатів наук; 4 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Применение метода R-функций к исследованию нелинейных колебаний функционально-градиентных пологих оболочек
    (Донецкий национальный университет им. Василия Стуса, 2014) Курпа, Лидия Васильевна; Шматко, Татьяна Валентиновна
    Paссмотрена задача о свободных колебаниях функционально-градиентных пологих оболочек и пластин с учетом их геометрически нелинейного деформирования. Используемый алгоритм базируется на предложенных ранее идеях, в основу которых положены теория R-функций, вариационные методы и метод Рунге-Кутта. Отличительной особенностью предложенного подхода является метод сведения исходной нелинейной системы уравнений движения с частными производными к нелинейной системе обыкновенных дифференциальных уравнений. Применение теории R-функций позволяет распространить предложенный подход на оболочки с произвольной формой плана и различными видами граничных условий. Представленные численные результаты подтверждают эффективность, универсальность и достоверность разработанного метода.
  • Ескіз
    Документ
    Свободные колебания функционально-градиентных пологих оболочек со сложной формой плана
    (Донецкий национальный университет им. Василия Стуса, 2014) Курпа, Лидия Васильевна; Шматко, Татьяна Валентиновна
    С использованием теории R-функций и вариационного метода Ритца предложен подход к решению задач о свободных колебаниях функционально-градиентных (ФГ) пологих оболочек с различной формой плана. Алгоритм разработан для уточненной теории ФГ пологих оболочек типа теории С. П. Тимошенко. С помощью разработанного программного обеспечения решены тестовые задачи для ФГ пологих оболочек с квадратным и эллиптическим планом. Для иллюстрации эффективности и универсальности предложенного подхода рассмотрены оболочки различной кривизны, опирающиеся на план сложной формы.
  • Ескіз
    Документ
    Исследование геометрически нелинейных колебаний функционально-градиентных пологих оболочек со сложной формой плана
    (Запорізький національний університет, 2015) Курпа, Лидия Васильевна; Шматко, Татьяна Валентиновна
    В работе предлагается метод исследования геометрически нелинейных колебаний функционально-градиентных пологих оболочек с различной формой плана. Постановка задачи выполнена в рамках уточненной нелинейной теории пологих оболочек первого порядка. Используемый алгоритм базируется на предложенных ранее идеях, в основу которых положены теория R-функций, вариационные методы и метод Рунге-Кутта. Выполнено тестирование предложенного подхода и исследованы функционально-градиентные пологие оболочки со сложной формой плана.
  • Ескіз
    Документ
    Investigating geometrically nonlinear vibrations of laminated shallow shells with layers of variable thickness via the R-functions theory
    (Elsevier Inc., 2015) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, T.
    A novel numerical/analytical approach to study geometrically nonlinear vibrations of shells with variable thickness of layers is proposed. It enables investigation of shallow shells with complex forms and different boundary conditions. The proposed method combines application of the R-functions theory, variational Ritz’s method, as well as hybrid Bubnov–Galerkin method and the fourth-order Runge–Kutta method. Mainly two approaches, classical and first-order shear deformation theories of shells are used. An original scheme of discretization regarding time reduces the initial problem to the solution of a sequence of linear problems including those related to linear vibrations with a special type of elasticity, as well as problems governed by non-linear system of ordinary differential equations. The proposed method is validated by the investigation of test problems for shallow shells with rectangular planform and applied to new vibration problems for shallow shells with complex planforms and variable thickness of layers.
  • Ескіз
    Документ
    Analysis of Geometrically Nonlinear Vibrations of Functionally Graded Shallow Shells of a Complex Shape
    (Marcílio Alves, 2017) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, T.
    Geometrically nonlinear vibrations of functionally graded shallow shells of complex planform are studied. The paper deals with a power-law distribution of the volume fraction of ceramics and metal through the thickness. The analysis is performed with the use of the R-functions theory and variational Ritz method. Moreover, the Bubnov-Galerkin and the Runge-Kutta methods are employed. A novel approach of discretization of the equation of motion with respect to time is proposed. According to the developed approach, the eigenfunctions of the linear vibration problem and some auxiliary functions are appropriately matched to fit unknown functions of the input nonlinear problem. Application of the R-functions theory on every step has allowed the extension of the proposed approach to study shallow shells with an arbitrary shape and different kinds of boundary conditions. Numerical realization of the proposed method is performed only for one-mode approximation with respect to time. Simultaneously, the developed method is validated by investigating test problems for shallow shells with rectangular and elliptical planforms, and then applied to new kinds of dynamic problems for shallow shells having complex planforms.
  • Ескіз
    Документ
    Определение собственных частот функционально-градиентных пологих оболочек с помощью метода R-функций и сплайн-аппроксимации
    (НТУ "ХПИ", 2014) Курпа, Лидия Васильевна; Осетров, Андрей Александрович; Шматко, Татьяна Валентиновна
    Предложен метод исследования спектра собственных частот и форм колебаний пологих оболочек неканонических форм в плане, изготовленных из функционально-градиентных материалов. Метод основывается на совместном применении уточненной теории первого порядка типа Тимошенко, вариационного метода Ритца, теории R-функций (RFM) и сплайн-аппроксимации. Предложенный метод позволил провести исследование влияния вида граничных условий, кривизны и показателя степени объемной доли материала на спектр собственных частот и форм колебаний оболочек со сложной формой плана. Результаты, представленные в работе, получены как с помощью полиномиальной, так и с помощью сплайн-аппроксимации. Для подтверждения достоверности результатов приведено их сравнение с известными ранее в литературе для оболочек с прямоугольной формой плана.