Кафедра "Вища математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7491

Офіційний сайт кафедри http://web.kpi.kharkov.ua/vm

Напевно відомо, що в 1923 році в ХТІ вже була кафедра математики, а її першим керівником був Бржечка Володимир Фомич. Кафедра вищої математики є одним із найстаріших підрозділів нашого університету. Дисципліни вища математика та нарисна геометрія викладалися починаючи з 1885 року.

У джерел розробки методики викладання математики стояли найвидатніші вчені, академіки Олександр Михайлович Ляпунов, Володимир Андрійович Стеклов й інші. Колектив кафедри намагається на всіх етапах її становлення й розвитку зберігати традиції, закладені засновниками кафедри, продовжує наукову працю, розвиває закладені напрямки в сучасній математичній підготовці студентів університету. Щорічно навчаються математиці майже чотири тисячі студентів денного відділення.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут .

У складі науково-педагогічного колективу кафедри працюють: доктор фізико-математичних наук, доктор педагогічних наук, 2 доктора технічних наук, 8 кандидатів наук; 4 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 5 з 5
  • Ескіз
    Документ
    Частный случай теоремы Ферма
    (2020) Геворкян, Юрий Левонович
    В статье предлагается доказательство теоремы Ферма. Вместо целых чисел a, b, c в теореме Ферма рассматривается треугольник с длинами сторон a, b, c. Доказано, что в случае прямоугольного и тупоугольного треугольников уравнение Ферма решений не имеет. При рассмотрении случая, когда a, b, c являются сторонами остроугольного треугольника, доказана теорема для случая, когда a, b, c принимают последовательные значения натуральных чисел. В общем случае проведены вычисления, позволившие сделать вывод, что уравнение Ферма не имеет целых решений при 2 p  .
  • Ескіз
    Документ
    Теорема Ферма
    (2020) Геворкян, Юрий Левонович
    В статье предлагается доказательство теоремы Ферма. Вместо целых чисел a, b, c в теореме Ферма рассматривается треугольник с длинами сторон a, b, c . Доказано, что в случае прямоугольного и тупоугольного треугольников уравнение Ферма решений не имеет. При рассмотрении случая, когда a, b, c являются сторонами остроугольного треугольника, были проведены вычисления, позволившие сделать вывод, что уравнение Ферма не имеет целых решений при p  2. Рассмотрен предельный случай теоремы.
  • Ескіз
    Документ
    Теорема Ферма
    (2020) Геворкян, Юрий Левонович
    В статье предлагается доказательство теоремы Ферма. Вместо целых чисел a, b, c в теореме Ферма рассматривается треугольник с длинами сторон a, b, c . Доказано, что в случае прямоугольного и тупоугольного треугольников уравнение Ферма решений не имеет. При рассмотрении случая, когда a, b, c являются сторонами остроугольного треугольника, доказано, что уравнение Ферма не имеет целых решений при p  2.
  • Ескіз
    Документ
    Великая теорема Ферма
    (2020) Геворкян, Юрий Левонович
    В статье предлагается доказательство теоремы Ферма. Вместо целых чисел 𝑎,b,c в теореме Ферма рассматривается треугольник с длинами сторон 𝑎,b,c. Доказано, что в случае прямоугольного и тупоугольного треугольников уравнение Ферма решений не имеет. При рассмотрении случая, когда 𝑎,b,c являются сторонами остроугольного треугольника, доказано, что уравнение Ферма не имеет целых решений при p>2.
  • Ескіз
    Документ
    Geometric approach to the proof of Fermat’s last theorem
    (Scientific Route, Estonia, 2022) Gevorkyan, Yuriy
    A geometric approach to the proof of Fermat’s last theorem is proposed. Instead of integers a, b, c, Fermat’s last theorem considers a triangle with side lengths a, b, c. It is proved that in the case of right-angled and obtuse-angled triangles Fermat’s equation has no solutions. When considering the case when a, b, c are sides of an acute triangle, it is proved that Fermat’s equation has no entire solutions for p > 2. The numbers a = k, b = k +m, c = k+n, where k, m, n are natural numbers satisfying the inequalities n > m, n < k+m, exhaust all possible variants of natural numbers a, b, c which are the sides of the triangle. The proof in this case is carried out by introducing a new auxiliary function f(k,p) = kp+(k+m)p–(k+n)p of two variables, which is a polynomial of degree p in the variable k. The study of this function necessary for the proof of the theorem is carried out. A special case of Fermat’s last theorem is proved, when the variables a, b, c take consecutive integer values. The proof of Fermat’s last theorem was carried out in two stages. Namely, all possible values of natural numbers k, m, n, p were considered, satisfying the following conditions: firstly, the number (np–mp) is odd, and secondly, this number is even, where the number (np–mp) is a free member of the function f(k, p). Another proof of Fermat’s last theorem is proposed, in which all possible relationships between the supposed integer solution k of the equation f(k, p) = 0 and the number (n −m ) corresponding to this supposed solution k are considered. The proof is carried out using the mathematical apparatus of the theory of integers, elements of higher algebra and the foundations of mathematical analysis. These studies are a continuation of the author’s works, in which some special cases of Fermat’s last theorem are proved.