Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 12
  • Ескіз
    Документ
    Влияние давления азотной атмосферы при осаждении вакуумно-дуговых многопериодных покрытий (Ti, Si)N/MoN на их структуру и свойства
    (Сумський державний університет, 2016) Береснев, В. М.; Соболь, Олег Валентинович; Мейлехов, Андрей Александрович; Постельник, Анна Александровна; Новиков, В. Ю.; Колесников, Д. А.; Столбовой, Вячеслав Александрович; Немченко, У. С.; Сребнюк, П. А.
    Используя комплекс методов структурной инженерии включающий: элементный анализ, рентгендифракционные исследования и измерения микротвердости в работе проведен анализ влияния рабочего давления азотной атмосферы при осаждении (PN) на формирование фазово-структурного состояния и механические свойства многопериодных вакуумно-дуговых покрытий системы (Ti,Si)N/MoN. Показано, что в интервале используемых давлений PN = 0,05…0,67 Па при повышении давления происходят изменения на элементном уровне: уменьшается содержание Si, увеличиваются – N и отношения Mo/Ti). На фазовом уровне в основном изменения происходят в слоях на основе молибдена, где с увеличением давления происходит переход. Наибольшая твердость (37,5 ГПа) достигается в этом случае при образовании слоев с изоструктурной кристаллической решеткой. Использование высокотемпературного отжига (1023 K) позволяет повысить твердость покрытий, полученных при относительно невысоком, когда из-за малого содержания азота возможно формирование дополнительной твердой фазы Ti5Si3.
  • Ескіз
    Документ
    Влияние высокоэнтропийных составляющих нитридных слоев на содержание азота и твердость вакуумно-дуговых многослойных покрытий (TiN-Cu)/(AlNbTiMoVCr)N
    (Сумський державний університет, 2016) Береснев, В. М.; Соболь, Олег Валентинович; Литовченко, С. В.; Немченко, У. С.; Столбовой, Вячеслав Александрович; Колесников, Д. А.; Мейлехов, Андрей Александрович; Постельник, Анна Александровна; Турбин, П. В.; Маликов, Л. В.
    Используя методы элементного анализа, рентгеноструктурных исследований и измерения микротвердости, необходимые для проведения комплексных исследований по схеме: состав – структура – свойства, исследованы возможности структурной инженерии многослойных (TiN-Cu)/(AlNbTiMoVCr)N покрытий. Установлено, что введение второго слоя из высокоэнтропийного сплава даже при относительно малом содержании составляющих элементов (до 1 мас. %) сопровождается формированием фазы на основе ГЦК решетки твердого раствора. Переход от однослойных TiN-Cu покрытий к многослойной системе (TiN-Cu)/(AlNbTiMoVCr)N сопровождается повышением относительного содержания азота в покрытии и ростом твердости, достигающей 24,5 ГПа.
  • Ескіз
    Документ
    Структурная инженерия вакуумно-дуговых многослойных покрытий ZrN/CrN
    (Сумський державний університет, 2016) Соболь, Олег Валентинович; Андреев, Анатолий Афанасьевич; Горбань, Виктор Федорович; Мейлехов, Андрей Александрович; Постельник, Анна Александровна; Столбовой, Вячеслав Александрович
    Для многослойной системы ZrN/CrN с большим различием по атомным массам и радиационно-стимулированному дефектообразованию металлических составляющих, проанализировано влияние толщины слоев (в нанометровом диапазоне) и подаваемого при осаждении отрицательного потенциала смещения (– Us) на структуру и твердость композиционных вакуумно-дуговых покрытий. Установлено, что при толщине слоев менее 50 нм подача – Us приводит к росту микродеформации в слоях CrN при бомбардировке их ионами Zr с большим атомным радиусом и массой, а в слоях ZrN наблюдается релаксация деформации. Наблюдаемые эффекты объяснены повышением энергии осаждаемых ионизированных частиц при подаче – Us, что определяет радиационно-стимулированное перемешивание на межфазных границах слоев и приводит к падению твердости. Наибольшая твердость 42 ГПа в системе ZrN/CrN достигается при осаждении тонких (20 нм) слоев в отсутствии – Us.
  • Ескіз
    Документ
    Влияние давления азота на структуру конденсатов, полученных из высокоэнтропийного сплава AlCrTiZrNbY при вакуумно-дуговом осаждении
    (2016) Береснев, В. М.; Соболь, Олег Валентинович; Немченко, У. С.; Литовченко, С. В.; Горбань, Г. Ф.; Столбовой, Вячеслав Александрович; Колесников, Д. А.; Мейлехов, Андрей Александрович; Постельник, Анна Александровна; Новиков, В. Ю.
    Методами электронной микроскопии с энергодисперсионным элементным анализом, рентгеновской дифрактометрии и микроиндентирования изучены возможности структурной инженерии вакуумно-дуговых покрытий на основе высокоэнтропийного сплава AlCrTiZrNbY. Установлено, что сформированные вакуумно-дуговым осаждением покрытия являются двухфазными объектами. Изменение давления азота при осаждении покрытий от 2,0∙10⁻⁴до 5,0∙10⁻⁴Торр повышает содержание его атомов в конденсате с 2,7 до 21,62%, что сопровождается переходом от нанокристаллически кластерного к нанокристаллическому двухфазному состоянию (сочетание ОЦК- и ГЦК-структур) и повышением твердости от 6,7 до 7,6 ГПа. Наблюдаемые структурные изменения объяснены образованием дефектов упаковки в ГЦК-решетке при малом содержании азота.
  • Ескіз
    Документ
    Влияние высоковольтного постоянного потенциала смещения на структуру и свойства многослойного композиционного материала MoN/CrN с разной толщиной слоев
    (2016) Гранкин, С. С.; Береснев, В. М.; Соболь, Олег Валентинович; Литовченко, С. В.; Столбовой, Вячеслав Александрович; Колесников, Д. А.; Мейлехов, Андрей Александрович; Постельник, Анна Александровна; Торяник, И. Н.
    Исследованы влияния высоковольтного постоянного потенциала смещения, давления азотной атмосферы и толщины слоев на фазовый и элементный составы, структуру и механические свойства композиционных многослойных покрытий CrN/MoN, полученных вакуумно-дуговым испарением в атмосфере азота. Установлено, что при уменьшении толщины слоев от 200 до 15 нм при практически неизменном фазовом составе твердость снижается с 34 до 13 ГПа, что можно связать с повышением удельного вклада неравновесных границ. При меньшей толщине слоев, около 5 нм, происходит увеличение твердости, а адгезионная прочность достигает высокого значения (187,17 Н) критической точки разрушения покрытия. Обсуждены возможные механизмы зафиксированного повышения механических свойств покрытия.
  • Ескіз
    Документ
    Исследование влияния распыления подложки ионами ниобия на её механические свойства
    (Jerozolimskie, Poland, 2016) Надтока, Владимир Николаевич; Андреев, Анатолий Афанасьевич; Соболь, Олег Валентинович; Столбовой, Вячеслав Александрович; Постельник, Анна Александровна; Князев, Сергей Анатольевич
    Проведено исследование влияния отрицательного потенциала подложки в вакуумно-ду-говой плазме, давления в вакуумной камере, присутствия аргона и азота, а также расстояния "подложка – катод" на скорость распыления ионами ниобия поверхности подложки и её механические характеристики. Показано, что присутствие аргона в вакуумной камере в пределах 0,04…0,66 Па увеличивает скорость распыления. Присутствие азота приводит к уменьшению скорости распыления. Установлено, что бомбар-дировка ионами испаряемого материала поверхности подложки приводит к увеличению ее твердости. Причиной увеличения твердости является насыщение ее поверхности атомами ниобия, а в присутствии азота дополнительно атомами азота.
  • Ескіз
    Документ
    Использование смеси газов (C₂H₂+N₂) для получения высокотвердых карбонитридных покрытий на основе молибдена
    (Сумський державний університет, 2017) Береснев, В. М.; Соболь, Олег Валентинович; Погребняк, Александр Дмитриевич; Литовченко, С. В.; Мейлехов, Андрей Александрович; Немченко, У. С.; Столбовой, Вячеслав Александрович; Евтушенко, Наталья Сергеевна; Колесников, Д. А.; Ковалева, М. Г.; Мазилин, Б. А.; Маликов, Л. В.; Проценко, З. Н.; Дощечкина, И. В.
    Изучено влияние рабочего давления и соотношение компонент смеси газов (C2₂H₂+N₂) на элементный и фазовый составы, структуру и физико-механические характеристики формируемых вакуумно-дуговых покрытий на основе вольфрама. Показано, что для высокотемпературного применения, нитриды менее предпочтительны по сравнению с карбидами. В температурном интервале осаждения 400-550 °С в результате плазмо-химических реакций при составе газовой атмосферы 80% C2₂H₂+20% N₂ максимальное содержание атомов азота в покрытии не превышает 1,5 ат.%. Для состава 40% C2₂H₂+60% N₂ максимальное соотношение N/C (в ат.%) повышается до 10,5 % при максимальном давлении 3х10⁻³ Торр. Относительное содержание атомов азота увеличивается с повышением давления смеси. Плазменно-химические реакции при осаждении в смеси газов приводят к формированию фаз с нанометровым размером кристаллитов и фазовым составом на основе y-MoC (80% C₂H₂+20% N₂) и фаз y-MoC и y-Mo₂N (при меньшем содержании C₂H₂ (40% C₂H₂+60% N₂) в газовой смеси. Установлено, что определяющим фактором повышения твердости является рабочее давление смеси газов при осаждении. При наибольшем давлении 3х10⁻³ Торр, когда формируется текстура [100] нанокристаллитов карбида молибдена (y-MoC) достигается сверхтвердое состояние с твердостью 50,5 ГПа.
  • Ескіз
    Документ
    Исследование влияния режимов ионного азотирования на структуру и твердость стали
    (Технологический центр, Украинский государственный университет железнодорожного транспорта, 2016) Соболь, Олег Валентинович; Андреев, Анатолий Афанасьевич; Столбовой, Вячеслав Александрович; Князев, Сергей Анатольевич; Бармин, Александр Евгеньевич; Кривобок, Н. А.
    Используя ионное азотирование при давлении PN=(4…40).10-4 Торр и постоянных отрицательных потенциалах –600, –900 и –1300 В, изучены возможности структурной инженерии и ее влияние на твердость. Выявлено образование S фазы при наименьшем давлении, определен ее период решетки 0,381 нм, что соответствует формуле FeN0,4, а также установлена большая ширина дифракционных рефлексов S фазы, что свидетельствует о дроблении и высокой микродеформации кристаллитов исходного аустенита при образовании S фазы. Показано, что наивысшую твердость можно получить при условии формирования в процессе азотирования композиции из CrN, S и исходной γ (аустенит) фаз.
  • Ескіз
    Документ
    Структурная инженерия многослойной системы TiN/CrN, полученной вакуумно-дуговым испарением
    (Сумський державний університет, 2015) Соболь, Олег Валентинович; Андреев, Анатолий Афанасьевич; Горбань, Виктор Федорович; Столбовой, Вячеслав Александрович; Пинчук, Наталия Владимировна; Мейлехов, Андрей Александрович
    Методами рентгеновской дифрактометрии, электронной микроскопии и микроиндентирования исследованы фазовый состав, структура, субструктура и твердость вакуумно-дуговых многослойных покрытий системы TiN / CrN, полученных в интервале давления азота 1x10 – 5…5x10 – 3 Торр при подаче постоянного и импульсного отрицательного потенциала смещения. Установлено формирование двухфазного состояния с преимущественной ориентацией роста кристаллитов. При высоком давлении (1…5)x10 – 3 Торр и подаче отрицательного постоянного потенциала смещения: Uпп = – 20 В – ось текстуры [100], при – 230 В – ось текстуры [111]. Основываясь на исследованиях субструктурного состояния, установлена связь перехода в сверхтвердое (до 57 ГПа) состояние с уменьшением микродеформации и размера кристаллитов в TiN слоях.
  • Ескіз
    Документ
    Закономерности формирования структуры покрытий CrN, полученных вакуумно-дуговым испарением в атмосфере азота
    (Сумской государственный университет, 2015) Соболь, Олег Валентинович; Андреев, Анатолий Афанасьевич; Столбовой, Вячеслав Александрович; Пинчук, Наталия Владимировна; Мейлехов, Андрей Александрович
    Рассмотрены вопросы структурной инженерии покрытий системы Cr-N, полученных вакуумно-дуговым испарением катода Cr в азотной атмосфере. В качестве изменяемых физико-технологических параметров использовались: давление азотной атмосферы (3,5…48) 10 – 4 Торр и отрицательный потенциал смещения, подаваемый на подложку в постоянном (Ub – 120 В) и импульсном (Uip – 1200 В) режимах. Увеличение давления без импульсного воздействия позволяет переходить от Cr + Cr2N фаз к текстурированным кристаллитам CrN фазы с осью [111]. Переход от металлической фазы к нитридной сопровождается уменьшением среднего размера кристаллитов. Дополнительная подача импульсного потенциала позволяет интенсифицировать процесс образования нитридов и стимулирует при высоких давлениях формирование радиационно-стойкой тестуры с осью [110].