Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Застосування багатокомпонентної моделі даних для описів класів у задачі класифікації зображень(Національний технічний університет "Харківський політехнічний інститут", 2022) Гороховатський, Володимир Олексійович; Стяглик, Наталя Іванівна; Жадан, Олексій ВіталійовичПредметом досліджень статті є методи класифікації зображень за множиною дескрипторів ключових точок у системах комп'ютерного зору. Метою є підвищення ефективності класифікації шляхом впровадження багатокомпонентної моделі даних на множині дескрипторів для бази еталонних образів. Застосовувані методи: детектор та дескриптори ORB, апарат теорії множин і векторного простору, метричні моделі визначення релевантності для множин багатовимірних векторів, елементи теорії ймовірностей, програмне моделювання. Отримані результати: розроблено модифікований метод класифікації зображень на основі впровадження багатокомпонентної моделі для аналізу даних із системою центрів, визначено способи побудови множини центрів даних, найбільш ефективним є медоїд множиниі базовані на ньому центри. Результативність модифікації суттєво залежить від способу формування центрів, застосованої моделі класифікації, а також від самих даних. Найкращі результати показала класифікація з інтегрованим показником окремо для кожного із еталонів у вигляді суми значень розподілів для набору центрів; експериментально перевірена результативність класифікації, підтверджена працездатність запропонованого методу. Практична значущість роботи – побудова моделей класифікації у трансформованому просторі даних, підтвердження працездатності запропонованих модифікацій на прикладах зображень, створення програмного застосунку для впровадження розроблених методів класифікації у системах комп'ютерного зору.Документ Комбінаційний метод прискореного метричного пошуку даних у задачах класифікації зображень(Національний технічний університет "Харківський політехнічний інститут", 2021) Гороховатський, Володимир Олексійович; Стяглик, Наталя Іванівна; Царевська, Віталія ВіталіївнаПредметом досліджень статті є методи класифікації зображень за множиною дескрипторів ключових точок у системах комп’ютерного зору. Метою є підвищення продуктивності структурних методів класифікації шляхом впровадження індексованих хеш-структур на множині дескрипторів бази еталонних образів та узгодженого ланцюжкового поєднання кількох етапів аналізу даних у процесі класифікації. Застосовувані методи: детектор та де- скриптори BRISK, засоби хешування даних, методи пошуку в об’ємних масивах даних, метричний апарат визначення релевантності векторів, програмне моделювання. Отримані результати: розроблено ефективний метод класифікації зображень на основі впровадження швидкісного пошуку із використанням індексованих хеш-структур, що прискорює обчислення в десятки разів; виграш у часі обчислень збільшується при зростанні числа еталонів та дескрипторів у описах; особливості класифікатора полягають у тому, що здійснюється не точний пошук, а із врахуванням допустимого відхилення даних від еталону; експериментально перевірена результативність класифікації, що вказує на працездатність та ефективність запропонованого методу. Практична значущість роботи – побудова моделей класифікації у трансформованому просторі хеш-подання даних, підтвердження працездатності запропонованих модифікацій класифікаторів на прикладах зображень, розроблення прикладних програмних моделей для впровадження запропонованих методів класифікації у системах комп’ютерного зору.Документ Дослідження трансформацій простору даних при навчанні мережі Кохонена у методах структурної класифікації зображень(Національний технічний університет "Харківський політехнічний інститут", 2020) Гороховатський, Володимир Олексійович; Пупченко, Дмитро Вікторович; Стяглик, Наталя ІванівнаПредметом досліджень статті є модифікація засобів навчання мережі Кохонена задля класифікації зображень у системах комп'ютерного зору. Метою є визначення нового простору даних для навчання мережі та створення ефективного методу класифікації на основі множини дескрипторів ключових точок. Завдання: застосування нейронної мережі Кохонена для навчання системи класифікації у визначеному просторі даних, трансформація простору даних навчання мережі, вивчення адаптаційних можливостей і оцінювання ефективності функціонування мережі засобами програмного моделювання. Методами є: інтелектуальний аналіз даних, апарат структурної класифікації зображень, детектор ORB для визначення дескрипторів ключових точок, засоби навчання мережі Кохонена, програмне моделювання. Отримані такі результати. Запропоновано моделі трансформації даних, які підвищують результативність навчання. Проведено порівняльний аналіз розроблених методів навчання та класифікації. Здійснена програмна реалізація системи класифікації, експериментально проведено дослідження її ефективності та оцінювання часу оброблення. Висновки. Наукова новизна дослідження полягає в удосконаленні методів структурної класифікації з використанням навчання мережі Кохонена шляхом впровадження нового простору даних на базі центрів описів еталонів та згортання даних, що сприяє забезпеченню високої результативності класифікації при достатній швидкодії та дає можливість використовувати модифіковані методи у застосунках реального часу. Практичну значимість роботи складають отримані моделі програмного забезпечення для оцінювання ефективності класифікаторів у системах комп'ютерного зору, підтверджена ефективність розробок на прикладах баз даних зображень.