Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Dielectric Control of Motor Fuel Compounding Plants
    (2022) Sater, Nabil Abdel; Grigorov, Andrey; Neustroieva, Gelena; Bondarenko, Oleksandr; Matukhno, Vasyl; Vavreniuk, Sergii
    The article proposes the use of operational dielectric control system to increase the efficiency of operation of automatic compounding of motor fuels. These plants are used at oil refining enterprises in Ukraine and are an integral part of the technological chain of the commercial fuels production. It is established that all the main components and additives used for the production of commercial gasoline brands A-92, A-95 and A-98 have higher values (εmix) than straight run base gasoline. And this, in turn, can be used for operational control of the gasoline compounding process. This control can be carried out on the basis of the information received from capacitive sensors which are located in pipelines of the main material streams. Moreover, the control is carried out on the content of components (X, %) or on the value of the octane number (ON, point) of the mixture on the basis of experimentally obtained dependences 𝜀𝜀mix=𝑓𝑓(𝑋𝑋) and ОN=𝑓𝑓(𝜀𝜀mix).
  • Ескіз
    Документ
    Recycling of Polymer Waste into Plastic Lubricants
    (2022) Grigorov, Andrey; Sinkevich, Irina; Ponomarenko, Natalia; Bondarenko, Oleksandr; Usachov, Dmytro; Matukhno, Vasyl; Shevchuk, Oleksandr
    A technology for the production of greases from polymeric household waste has been proposed, including the stage of boiling the polymer in a solvent, which is used as a used motor oil SAE10W-40. In the production of greases using this technology, a significant amount of used polymer products is utilized, while the share of waste from low-pressure polyethylene and polypropylene (PP) is, respectively, 20-50% of the mass and 50-75% of the mass. This approach makes it possible to significantly expand the raw material base of the specified technological process and, due to the involvement of relatively cheap raw materials, significantly reduce the cost of finished products. The results of the study of the adhesive properties of the obtained lubricants allow us to give the following recommendations: for lubricants based on low-pressure polyethylene with a polymer: oil ratio of 1: 1, the rational rotation speed was no more than 2850 rpm, with a ratio of 1: 3 - about 3950 rpm and with a ratio of 1 : 5 - up to 5300 rpm; rational rotation speed for lubricants based on PP at a polymer: oil ratio of 1: 1 does not exceed 3600 rpm, at a ratio of 2: 1- 4900 rpm and at a ratio of 3: 1 - 6000 rpm.
  • Ескіз
    Документ
    Compatibility of Recycling Plastic Lubricants
    (2023) Grigorov, Andrey; Ponomarenko, Vitaliy; Slepuzhnikov, Yevhen; Bondarenko, Oleksandr; Artemev, Sergey; Ilinskyi, Oleksii; Bryhada, Olena
    The compatibility of recycled greases thickened with 5 % (wt.) polyethylene and polypropylene solid waste was studied. It was found that according to the values of the dropping point and adhesive properties, recycled greases, regardless of the base oil and thickener, are compatible. However, when 10 % (mass) of recycled lubricants are added to Solidol "Zh", its adhesion properties deteriorate by 300-400 rpm, due to the negative effect of the aging products of base oils on its structure, which indicates their incompatibility.
  • Ескіз
    Документ
    Technology for Producing Components of Technological and Boiler Fuels from Polymer Raw Materials
    (2021) Shevchenko, Kyrylo; Grigorov, A. B.; Ponomarenko, Vitaliy; Nahliuk, Mikhail; Bondarenko, Oleksandr; Stetsiuk, Yevhen; Matukhno, Vasyl
    The article presents a schematic diagram of obtaining the components of technological and boiler fuels from polymer raw materials represented by materials from low and high pressure polyethylene, polypropylene and polystyrene. This scheme is based on the process of non-catalytic thermal destruction of raw materials in a batch reactor and consists of a section for preparation of raw materials, a section for thermal destruction as well as the fractionation of the resulting products. The given scheme on an industrial scale, depending on the properties of the raw material, makes it possible to obtain 10-20% (mass) of the fraction - 200°C, 30-50% (mass) of the 200-360°C fraction and 20-30% (mass.) fractions (> 360°C). Among the by-products, 3.0-5.0% (mass) light hydrocarbon gases (0.5-1.0 mass %) and the coke residue are formed. According to their properties, the obtained liquid products can be used as components for the production of process and a boiler fuel or as additives to improve the low-temperature properties of commercial fuels.
  • Ескіз
    Документ
    Improvement of Operational Properties of Technological Fuel – A Review
    (2021) Shevchenko, Kyrylo; Grigorov, A. B.; Neshko, Svetlana; Desna, Natalia; Bondarenko, Oleksandr; Stetsiuk, Yevhen
    An overview of the ways of improving the operational properties of furnace and boiler fuels has been presented; their positive and negative features have been analyzed. It has been established that the most effective way to improve the operational properties of furnace and boiler fuels is their compounding with additives as well as various components since it is easy to implement under conditions of direct application of process fuel. It has been suggested that a very successful alternative to the additives and components used in industry can be fractions (components) obtained by thermal destruction in the temperature range of 300-380°C of secondary polymer raw materials, represented by polyethylene, polypropylene, and polystyrene.
  • Ескіз
    Документ
    Construction of a generalized model of the harmful substances biochemical destruction process kinetics under conditions of substrate inhibition using the methods of simulation modeling
    (Технологический центр, 2019) Bakharieva, Ganna ; Falalieieva, Tetiana; Petrov, Serhii; Mezentseva, Iryna; Kobylianskyi, Borys; Tolkunov, Ihor; Bondarenko, Oleksandr
    For the purpose of obtaining the complete range of solutions for substrate inhibition of varying intensity, the mechanism of enzyme kinetics in a biocell was modeled by a multi-channel queuing system. A full range of solutions is required to make a well-grounded choice of a unified generalizing formula. The process of biodegradation with substrate inhibition was described mathematically using the method of dynamics of averages. For specific destruction rate, a full range of solutions Vn of the system from minimum n=2 to limiting n→∞ order was found. It was established that the parameters of the curve shape for the solution with minimum inhibition intensity V2 substantially stand out from the general series of the spectrum formulas. The value of the coordinate of function maximum (n=2) V2 is by 1.42 times higher than that of dependence (n=3) V3. In the numerical experiment, the physical test was simulated by description with the help of the method of the least squares of the data, assigned by the calculation from the formulas of different structures, bearing in mind a sporadic random error. The series of numerical experiments demonstrated the capability of the formula of limiting order formula Ve to describe the dependences of the whole spectrum of solutions. During describing the intermediate ratio V3 with the help of formulas V2 and Ve, the benefit is the possible range of changing the concentrations, which is by 1.5-2 times larger at the same relative error for dependence Vе. For critical minimal order, an average relative error is sure not to exceed five percent. An increase in random error always result in statistical equality, in accuracy of describing by formulas of minimal V2 and limiting orders Ve of the data, assigned by calculation of second-order dependences. Statistical equality is achieved at the ratio of a random error to the initial error equal to ≥2.4. Collectively, the importance of the results of numerical modeling of a physical experiment involves proving the possibility of using the formula of limiting order Ve as unified when describing the biodegradation processes with different mechanisms of substrate inhibition. This conclusion is proved by the adequate (R2=0.9396-0.9953) description with the help of the dependence of limiting order of experimental data on five harmful substances with varying inhibition degrees. A large amount of calculation allowed achieving a definite result – we obtained the unified formula that makes it possible to proceed to scientifically grounded design calculations for bio-treatment plants.