Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Developing the Key Attributes for Product Matching Based on the Item’s Image Tag Comparison
    (2020) Cherednichenko, Olga; Yanholenko, Olha; Kanishcheva, Olga
    With the constant growth of the number of products on e-marketplaces, buyers feel hard to find and choose items that would satisfy all their needs and expectations. Search and filtering algorithms of recommender systems, although are striving to help users, still fail quite often due to incomplete and inaccurate description of items. The given work suggests to combine analysis of both item description and item image in order to construct groups of similar items. Since a person can define whether two items are similar or not looking at two images and a brief description, it is suggested to form a set of similar items based on users’ judgments and then to extract the core of keywords for the specific type of products. Further, it is proposed to use the given core to evaluate the similarity of any new item added to the definite group. The case study deals with the building of the core of keywords for sneakers. The developed key attributes allow matching the items with a high precision, thus, proving the effectiveness of the method of the core construction.
  • Ескіз
    Документ
    Studying items similarity for dependable buying on electronic marketplaces
    (2018) Cherednichenko, Olga; Vovk, Maryna Anatoliivna; Kanishcheva, Olga; Godlevskyi, Mikhail
    The processing of product buying is a very difficult task when we have thousands of items in each market category. In order to study items similarity for dependable buying we try to analyze item descriptions on AliExpress, eBay marketplaces and test k-means algorithm for item grouping/product segmentation. The usage of the classical clusterization algorithms for grouping similar products according to their descriptions is studied. A corpus of different products (bikes and smartphones) from e-shop AliExpress, eBay is developed. Each entity in this corpus contains photos and a product description. Each entity in this corpus contains product description with different fields. These short texts are used for experiments. As a result, it is found out that the k-means algorithm works well only for uniformly distributed data by categories, but this is not suitable for the segmentation of heterogeneous descriptions. The task of item descriptions systematization is set in the research below.