Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 5 з 5
  • Ескіз
    Документ
    Methodology of definition of optimal diamond wheel characteristics at stages of production and operation
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.
    The problem of increase of effectiveness of manufacturing and application of diamondabrasive tool is still a challenging research subject. Development of computer facilities opens up possibilities for development of three-dimensional (3D) methodology of integrated study of the interconnected processes of manufacturing and exploitation of diamond-abrasive tool and improvement of the single-point tool reliability at the stage of tool sharpening. Creation of the methodology of 3D simulation of processes of diamond-abrasive tool sintering and processes of machining allows to increase essentially validity of the obtained results, to reduce volume of experimental researches for definition of optimum grinding conditions and to develop new technologies, tools and equipment. The developed methodology gives the opportunity to create expert system for assignment of rational characteristics of diamond wheels and grinding modes. The proposed 3D methodology to research processes of diamond-abrasive machining covers all basic stages of life cycle of the tool, including processes of manufacturing and exploitation. Subsystem of computer-generated determination of conditions of manufacturing of defect-free diamond wheels and grinding of superhard materials on the base of 3D simulation of deflected mode of elements of the "SHM crystal grain – metal phase – grain –bond" system at process of diamond wheel sintering and grinding is developed.
  • Ескіз
    Документ
    3D methodology of research of diamond-abrasive machining process
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.
    Subsystem of computer-generated determination of conditions of manufacturing of defect-free diamond wheels and grinding of superhard materials on the base of 3D simulation of deflected mode of elements of the "SHM crystal grain – metal phase – grain – bond" system at process of diamond wheel sintering and grinding is developed.
  • Ескіз
    Документ
    Increase of efficiency of diamond grinding superhard of materials
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.
    The analysis of algorithm of expert system of process of diamond grinding superhard of materials (SHPM) is given. For realization of the offered expert system the ways of grinding with the combined control of parameters of a working surface of diamond circles are developed.The designed ways of superhard polycrystallic material diamond grinding basing on control of a grinding wheel surface with usage of simulation of destruction processes of the system "polycrysta-grain–wheel bond" considered.
  • Ескіз
    Документ
    Theoretical reasoning for efficient use of micro powders in diamond wheels on metallic bonds
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.
    The article presents theoretical researches of improving the manufacturing process and the subsequent using of grinding wheels from diamond micro powders of diamond on currentcarrying bonds, which allow to reduce the specific consumption of synthetic diamonds in the finishing operations of processing polycrystalline superhard materials It is proposed to use diamond grains with a metal coating in an abrasive tool. 3D analysis of the stress-strain state “diamond grain-coating-bond” system showed ways to reduce the probability of destruction of diamond grains during sintering of the diamond-carrying layer by changing the thickness of the coating, the elastic modulus of its material and other parameters. The calculated low values of the concentration of coated diamond grains provide a significant reduction in their specific consumption in the processing of polycrystalline superhard materials.
  • Ескіз
    Документ
    Specificity of using diamond micropowders in wheels on metallic bonds
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Grabchenko, A. I.; Pyzhov, I.; Dobroskok, V. L.; Fedorovich, V. A.; Ostroverkh, Y.
    Some issues related to the possibility of increasing the efficiency of shaping blade tools from polycrystalline superhard materials by diamond grinding are considered. It has been established that one of the ways to increase the efficiency of using diamond micropowder grains in circles is to apply thick metal coatings on them. The use of embossed metal coatings on diamond grains can significantly extend their cutting resource. This is explained on the one hand by a stronger adhesion of the coating material to the diamond surface compared to the components of the binder, and on the other hand, a significant increase in the contact surface of the coated grain with the binder of the circle. It was established that the strength of metal and ceramic ligaments should be consistent with the strength of diamond grains sintered with it, and the concentration and graininess of the latter have a significant impact on the integrity of the grains in the sintered layer.