Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
4 результатів
Результати пошуку
Документ Theoretical justification of rational conditions for produsing diamond wheels on ceramic bonds(Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, Vladimir; Ostroverkh, Y.; Pyzhov, Ivan; Lavrinenko, V.The article describes the results of theoretical studies using 3D finite element modeling, which made it possible to determine the rational characteristics of diamond wheels on ceramic bonds. The influence of the parameters of the diamond-bearing layer on the change in its stress-strain state in the sintering zone of the diamond wheel has been studied. The results of finite element and microlevel 3D modeling of the sintering process of a ceramic-matrix diamond-containing composite are analyzed. The influence of the technological parameters of the process and the characteristics of the diamond wheel on the integrity of the grains during sintering was established, on the basis of which practical recommendations were given for the selection of diamond compositions with rational properties.Документ Methodology for developing an expert system for the grinding of superhard materials(Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, V. A.; Pyzhov, Ivan; Ostroverkh, Y.; Pupan, L. I.; Garachenko, Ya.An expert system of the grinding process has been developed, which makes it possible to predict and optimize the process of defect-free processing of both existing and newly created superhard materials. The expert system consists oftwo interconnected modules - theoretical and experimental. The theoretical module ofthe expert system allows, at a given level of significance, to determine the values of the output indicators and the kinetics of their change in the process of adaptability, depending on the physical and mechanical properties of the interacting materials and processing conditions. The experimental module of the expert system allows you to coordinate and correct the results of theoretical calculations when determining the optimal grinding and operating conditions for processing various grades of superhard materials. When optimizing the sharpening process of a blade tool, processing efficiency, consumption of diamond wheels, cost price and various quality indicators of its cutting elements can be selected as a criterion. The use of the expert system significantly reduces the amount of expensive and laborious researches in determining the optimal processing conditions for various grades of superhard materials (SHM), including newly created ones.Документ Modeling the influence of metal phase in diamond grains on self-sharpening of grinding wheels on ceramic bonds(Національний технічний університет "Харківський політехнічний інститут", 2021) Fedorovich, V. A.; Fedorenko, D.; Pyzhov, Ivan; Ostroverkh, Y.The article presents the results of theoretical studies using finite element modeling, which made it possible to determine the rational characteristics of diamond wheels based on ceramic and polymer bonds. The effect of the parameters of the diamond-bearing layer on the change in its stress-strain state in the process of microcutting of hard alloys and superhard materials has been studied. It is established that the determining factor in the occurrence of critical stresses during grinding is the temperature in the cutting area, the increase of which in the presence of metal phase inclusions in diamond grains with high values of thermal expansion coefficient can lead to destructive stresses in grains and, consequently, their premature destruction. It is advisable to use diamond grains with a minimum content of metal phase and the use in the manufacture of synthetic diamonds solvent metals with a low value of this coefficient, which will significantly increase the use of potentially high resource diamond grains.Документ Some features of the surface micro- and macroprofile formation at flat face grinding with spindle axis inclination(Trans Tech Publications Inc., 2015) Kundrák, János; Fedorovich, Vladimir; Pyzhov, Ivan; Markopoulos, Angelos; Klimenko, VitalyThe work described in this paper pertains to the identification of some features of microand macroprofile formation of surfaces to be machined with flat face grinding, with inclination of the spindle axis. The question of the formation of machined surface profile at through-feed grinding and multiple-pass scheme are considered by using computer-aided simulations in COMPASS environment. More specifically, for flat face through-feed grinding, a generalized empirical equation exhibiting the dependency of concavity from the outer diameter of the face grinding wheel, the spindle axis inclination angle and the width of the surface of the workpiece is acquired. Furthermore, based on the maximum allowable value of flatness deviation and with pre-determined grinding wheel diameter and workpiece width, it is possible to identify the maximum inclination angle at which concavity falls within acceptable limits. For the case of multiple pass flat face grinding, the role of factors such as inclination angle of spindle axis, cross-feed and diameter of the grinding wheel on the height of residual ridges on the surface of the parts is determined through the proposal of an empirical equation. With the aforementioned equations the machinist may reasonably prescribe machining conditions in practice. The conducted research contributes to the expansion of ideas regarding technological possibilities of improvement of flat face grinding.