Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
5 результатів
Результати пошуку
Публікація Percolation effects and self-organization processes in cold-pressed Bi2(Te1−xSex)3 solid solutions(Elsevier Ltd, 2021) Rogacheva, E. I.; Martynova, E. V.; Shelest, T. N.; Doroshenko, A. N.; Nashchekina, O. N.It was established that the dependences of thermoelectric and mechanical properties of cold-pressed Bi2(Te1−xSex)3 alloys on composition (x = 0–0.07) exhibit a non-monotonic behavior in certain concentration ranges: an anomalous decrease in the Seebeck coefficient, thermoelectric power factor, and microhardness, and increase in electrical conductivity with increasing x. We observed similar anomalies earlier for cast Bi2(Te1−xSex)3 alloys and explained them by percolation and self-organization phenomena. Thus, the existence of the anomalies does not depend on the method of sample preparation. However, in pressed samples as compared to cast ones conductivity type changes from p to n and thermoelectric power factor increases.Публікація Temperature and magnetic field dependences of thermoelectric properties of Bi1-xSbx solid solutions in the range x = 0-0.25(Elsevier Ltd, 2021) Rogacheva, E. I.; Doroshenko, A. N.; Nashchekina, O. N.Bi1–xSbx solid solutions are the best n-type thermoelectric materials for use at temperatures ≤200 K. An important parameter determining material’s figure of merit is charge carrier concentration. To determine it correctly, one should carry out measurements in a weak magnetic field. On the basis of the magnetic field dependences of the Hall coefficient and magnetoresistance, the dependences of the weak magnetic field boundary Bc on composition (x = 0–0.25) and temperature (T = 77–300 K) for polycrystalline Bi1–xSbx alloys were plotted. It was established that the Bc(x) dependences exhibit a non-monotonic behavior which is attributed to the existence of electronic phase transitions.Публікація Percolation effects and self-organization processes in Bi₂(Te₁₋ₓSeₓ)₃ solid solutions(Easy Conferences Ltd, 2019) Rogacheva, E. I.; Shelest, T. N.; Martynova, E. V.; Doroshenko, A. N.; Nashchekina, O. N.Публікація Percolation effects and self-organization processes in Bi₂(Te₁₋ₓSeₓ)₃ solid solutions(Науково-технологічний комплекс "Інститут монокристалів", 2019) Rogacheva, E. I.; Shelest, T. N.; Martynova, E. V.; Doroshenko, A. N.; Nashchekina, O. N.; Men'shov, Yu. V.The room-temperature dependences of microhardness H, electrical conductivity σ, the Seebeck coefficient S, and thermoelectric power factor P on composition of Bi₂(Te₁₋ₓSeₓ)₃ solid solutions were measured in the concentration range x = 0 - 0.07. In the intervals x = 0.0075 - 0.0175 and x = 0.025 - 0.035, an anomalous decrease in H and S and increase in σ with increasing x were observed. The first concentration-dependent anomaly was attributed to critical phenomena, accompanying a percolation-type phase transition. The percolation threshold xc and the radius of deformation spheres R₀ around Se impurity atoms were estimated. The second anomaly is assumed to be connected with a short-range ordering in the solid solution. The non-monotonic character of the dependences of H on the load on an indenter, whose behavior depended on the impurity concentration, was attributed to the interaction of the deformation fields created by dislocations and impurity atoms.Публікація Temperature and concentration dependences of specific heat of Bi₁₋ₓSbₓ solid solutions(Науково-технологічний комплекс "Інститут монокристалів", 2018) Rogacheva, E. I.; Doroshenko, A. N.; Nashchekina, O. N.For Bi₁₋ₓSbₓ solid solutions, the concentration (x = 0 - 0.12) and temperature (170-525 K) dependences of specific heat Cp were obtained. At all temperatures studied, three peaks of Cp were observed near x = 0.015, x = 0.037, and x = 0.07. The observed effects were attributed to critical phenomena accompanying the second-order phase transitions: percolation transition from dilute to concentrated solid solutions, the transition to a gapless state, and the semimetal-semiconductor transition, respectively. It was shown that the values of critical indexes (α = 0.11 ± 0.01) are the same not only for different peaks but also for different temperatures and correspond to the values theoretically calculated within the framework of scale-invariant theory for three-dimensional (3D) models.