Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
10 результатів
Результати пошуку
Документ Застосування статистичних мір релевантності для векторних структурних описів об'єктів у задачі класифікації зображень(Полтавський національний технічний університет імені Юрія Кондратюка, 2018) Гадецька, Світлана Вікторівна; Гороховатський, Володимир ОлексійовичВирішується задача класифікації зображень у просторі ознак дескрипторів особливих точок з поданням опису у кластерному виді і використанням статистичних мір для обчислення релевантності описів. Проведено аналіз особливостей застосування статистичного та метричного класифікаторів при визначенні рівня релевантності структурних описів. Виконано порівняння характеристик мір релевантності на розрахункових прикладах. Запропоновано використання розходження Кульбака-Лейблера як універсальної і ефективної міри для задачі класифікації. Підтверджена результативність запропонованого підходу для прикладних баз зображень. Наукова новизна дослідження полягає у розвиненні методу структурного розпізнавання зображень на основі кластерного опису множини дескрипторів особливих точок шляхом застосування апарату статистичних мір для визначення релевантності аналізованих та еталонних даних і побудови класифікаційних висновків у просторі кластер – еталон. Практична значущість роботи – отримання прикладних розрахункових моделей для застосування методів класифікації і підтвердження їх результативності в конкретних прикладах базах зображень.Документ Автоматическое управление скоростным режимом рельсовых транспортных средств с помощью технологий компьютерного зрения(2020) Кутовой, Юрий Николаевич; Кириленко, Ярослав Александрович; Кунченко, Татьяна ЮрьевнаРассмотрены возможности применения современных алгоритмов компьютерного зрения для создания систем автоматического регулирования скорости приводов рельсовых транспортных средств. Показано что указанные алгоритмы позволяют создать системы автовождения и системы реализации максимальной силы тяги по условию сцепления.Документ The Speed Calculating Increasing Method of the Markov Model Network Node(Національний технічний університет "Харківський політехнічний інститут", 2021) Pustovoitov, Pavlo; Okhrimenko, Maxim; Voronets, Vitalii; Udalov, DmitryThe subject of this research is the image classification methods based on a set of key points descriptors. The goal is to increase the performance of classification methods, in particular, to improve the time characteristics of classification by introducing hashing tools for reference data representation. Methods used: ORB detector and descriptors, data hashing tools, search methods in data arrays, metrics-based apparatus for determining the relevance of vectors, software modeling. The obtained results: developed an effective method of image classification based on the introduction of high-speed search using hash structures, which speeds up the calculation dozens of times; the classification time for the considered experimental descriptions increases linearly with decreasing number of hashes; the minimum metric value limit choice on setting the class for object descriptors significantly affects the accuracy of classification; the choice of such limit can be optimized for fixed samples databases; the experimentally achieved accuracy of classification indicates the efficiency of the proposed method based on data hashing. The practical significance of the work is - the classification model’s synthesis in the hash data representations space, efficiency proof of the proposed classifiers modifications on image examples, development of applied software models implementing the proposed classification methods in computer vision systems.Документ Редукція опису зображення у складі множини дескрипторів на основі метричного критерію інформативності(Національний технічний університет "Харківський політехнічний інститут", 2021) Гороховатський, Володимир Олексійович; Власенко, Наталія ВолодимирівнаПредметом досліджень статті є класифікатори зображень за множиною дескрипторів ключових точок. Метою є підвищення продуктивності методів класифікації, зокрема, скорочення обчислювальних затрат шляхом впровадження на попередньому етапі оброблення апарату редукції для подання еталонних даних. Методи, що застосовуються: метричний апарат у векторному просторі, моделі для оцінювання інформативності даних, методи пошуку в масивах даних, моделі для визначення релевантності векторів та множин векторів, програмне моделювання. Отримані результати: розроблено метод редукції даних для задач класифікації зображень на основі впровадження метричних критеріїв для оцінювання інформативності елементів структурного опису зображення, що скорочує опис та прискорює обчислення; час класифікації для розглянутих експериментальних описів пропорційно скорочується зі зменшенням об'єму опису; для модельного експерименту досягнуто скорочення часу класифікації у п'ять разів при зменшенні обсягу опису у два рази; проведене моделювання підтверджує працездатність та результативність запропонованого методу в аспекті забезпечення якості класифікації з використанням засобів редукції. Практична значущість роботи – побудова моделей для оцінювання ступеня інформативності для образів візуальних даних; підтвердження працездатності запропонованих модифікацій засобів аналізу даних, розроблення прикладних програмних моделей для впровадження запропонованих методів редукції даних та класифікації зображень у системах комп'ютерного зору.Документ Дослідження результативності класифікаторів зображень за статистичними розподілами для компонентів структурного опису(Національний технічний університет "Харківський політехнічний інститут", 2021) Гороховатський, Володимир Олексійович; Гадецька, Світлана Вікторівна; Жадан, Олексій Віталійович; Хвостенко, Олександр ОлександровичПредметом досліджень є моделі для побудови класифікаторів зображень у просторі описів як множини дескрипторів ключових точок при розпізнаванні візуальних об’єктів у системах комп’ютерного зору. Метою є створення та вивчення властивостей класифікатора зображень на підґрунті побудови ансамблю розподілів для компонентів структурного опису із використанням різноманітних моделей прийняття класифікаційних рішень, що забезпечує результативну класифікацію. Завдання: побудова моделей класифікації у синтезованому просторі образів ймовірнісних розподілів, аналіз параметрів, що впливають на їх ефективність, експериментальне оцінювання результативності класифікаторів засобами програмного моделювання за наслідками оброблення експериментальної бази зображень. Застосованими методами є: детектор ORB для формування дескрипторів ключових точок, інтелектуальний аналіз даних, математична статистика, засоби визначення релевантності для множин векторів даних, програмне моделювання. Отримані результати: Розроблений метод класифікації підтверджує свою працездатність та ефективність для класифікації зображень. Результативність методу може бути посилена введенням різноманіття видів метрик та мір подібності між центрами та дескрипторами, вибором способу формування центрів для еталонних описів, введенням логічного оброблення та стиснення структурного опису. Найкращі результати класифікації показала модель з використанням найбільш вагомого класу за вектором розподілів для кожного дескриптора, що відповідає параметру моди. Використання концентрованої частки даних опису дає можливість покращити його розрізнення з іншими описами. Застосування медіани як центру опису має перевагу над середнім значенням. Висновки. Наукова новизна – розроблення ефективного методу класифікації зображень на основі впровадження системи ймовірнісних розподілів для компонентів даних, що сприяє поглибленому аналізу у просторі даних та підвищує результативність класифікації. Класифікатор реалізовано у варіантах зіставлення інтегрального подання розподілів за класами і на підставі аналізу моди для розподілів окремих компонент. Практична значущість роботи – побудова моделей класифікації у видозміненому просторі даних, підтвердження працездатності запропонованих модифікацій аналізу даних на прикладах зображень, розроблення програмних моделей для впровадження запропонованих методів класифікації у системах комп’ютерного зору.Документ Класифікація зображень на підставі формування незалежної системи кластерів у складі структурних описів бази еталонів(Національний технічний університет "Харківський політехнічний інститут", 2020) Гороховатський, Володимир Олексійович; Пономаренко, Роман ПетровичПредметом досліджень статті є структурні методикласифікації зображень у просторі образів як множини дескрипторів ключових точок задля розпізнавання візуальних об’єктів у системах комп’ютерного зору. Метою є створення ефективного методу класифікації на підставі впровадження системи незалежних кластерів для бази еталонів. Завдання: розроблення моделей класифікації у новоствореному просторі образів, аналіз їх обчислювальної ефективності, оцінювання результативності класифікації засобами програмного моделювання. Методи: детектор BRISK для формування дескрипторів ключових точок, інтелектуальний аналіз даних, метод k-середніх для кластеризації даних, програмне моделювання. Отримані результати: запропоновано моделі класифікації описів на основі системи самостійних кластерів та їх центрів, які спрощують оброблення даних та підвищують швидкодію реалізації, проведено порівняльний аналіз розроблених методівіз відомими. Здійснена програмна реалізація впроваджених моделей класифікації, експериментально проведено дослідження їх ефективності та оцінювання часу оброблення. Висновки. Наукова новизна – розвинення методу класифікації зображень на основі впровадження системи незалежних кластерів для еталонних описів, що сприяє поглибленому аналізу даних. Метод реалізовано в модифікаціях зіставлення кластерного подання і на основі конкурентного аналізу дескрипторів опису. Практична значимість роботи полягає у побудові моделей класифікації у створеному просторі даних, підтвердженні працездатності запропонованих модифікацій оброблення даних, розробленні програмних моделей для впровадження методів у системах комп’ютерного зору.Публікація Using computer vision and fuzzy logic to assess quality of business process models(Прикарпатський національний університет ім. Василя Стефаника, 2019) Kopp, A. M.; Orlovskyi, D. L.In this paper we propose a method for quality assessment of business process models using computer vision and fuzzy logic. OpenCV library usage as well as bypassing of its drawbacks of template matching is considered. Membership functions of metrics of the business process model quality are outlined. Obtained results and future research are discussed.Документ Дослідження трансформацій простору даних при навчанні мережі Кохонена у методах структурної класифікації зображень(Національний технічний університет "Харківський політехнічний інститут", 2020) Гороховатський, Володимир Олексійович; Пупченко, Дмитро Вікторович; Стяглик, Наталя ІванівнаПредметом досліджень статті є модифікація засобів навчання мережі Кохонена задля класифікації зображень у системах комп'ютерного зору. Метою є визначення нового простору даних для навчання мережі та створення ефективного методу класифікації на основі множини дескрипторів ключових точок. Завдання: застосування нейронної мережі Кохонена для навчання системи класифікації у визначеному просторі даних, трансформація простору даних навчання мережі, вивчення адаптаційних можливостей і оцінювання ефективності функціонування мережі засобами програмного моделювання. Методами є: інтелектуальний аналіз даних, апарат структурної класифікації зображень, детектор ORB для визначення дескрипторів ключових точок, засоби навчання мережі Кохонена, програмне моделювання. Отримані такі результати. Запропоновано моделі трансформації даних, які підвищують результативність навчання. Проведено порівняльний аналіз розроблених методів навчання та класифікації. Здійснена програмна реалізація системи класифікації, експериментально проведено дослідження її ефективності та оцінювання часу оброблення. Висновки. Наукова новизна дослідження полягає в удосконаленні методів структурної класифікації з використанням навчання мережі Кохонена шляхом впровадження нового простору даних на базі центрів описів еталонів та згортання даних, що сприяє забезпеченню високої результативності класифікації при достатній швидкодії та дає можливість використовувати модифіковані методи у застосунках реального часу. Практичну значимість роботи складають отримані моделі програмного забезпечення для оцінювання ефективності класифікаторів у системах комп'ютерного зору, підтверджена ефективність розробок на прикладах баз даних зображень.Документ Алгоритм поиска устойчивых соответствий пар ключевых точек на изображениях и картах глубины(НТУ "ХПИ", 2019) Дашкевич, Андрей Александрович; Воронцова, Дарья Владимировна; Скоробогатько, Никита ВалентиновичРазвитие эффективных методов компьютерного зрения постоянно находится в центре исследований многих учёных, так как они дают возможность повысить скорость и эффективность решения задач в различных отраслях промышленности: картография, робототехника, системы виртуальной и дополненной реальности, системы автоматизированного проектирования. Значительную перспективу имеют современные исследования, методы и алгоритмы решения задач стереозрения, распознавания образов, в том числе те, которые работают в режиме реального времени. Одной из важных задач стереозрения является задача сопоставления карт глубины для получения трёхмерной модели сцены, но есть некоторые нерешенные вопросы процесса сопоставления карт глубин для крупномасштабных сцен окружающей среды, полученных беспилотными летательными аппаратами, а именно: низкое разрешение по глубине из-за большого расстоянию сцены от камеры, и проблема наличия шума вследствие дефектов камеры. Указанные проблемы затрудняют обнаружение ключевых точек на изображениях для их дальнейшего сопоставления. В представленной работе предлагается подход к определению ключевых точек на смежных картах глубин на основе поиска ключевых точек, находящихся в близких областях пространства параметров. Подход базируется на поиске множества ключевых точек в двух последовательных видеокадрах и нахождении среди них пар точек таких, что каждая точка пары соответствует одной и той же точке сцены на входном изображении. Соответствующие пары ключевых точек, которые локализованы детектором признаков, могут быть ложно-положительными. Предложенный алгоритм может устранить такие пары точек путём определения преобладающего направления движения ключевых точек в локальных участках изображения, а также алгоритм даёт возможность определения центра смещение точки обзора камеры, чем обеспечивает лучшую оценку положения съёмочного оборудования. Результаты работы реализованы в виде программного приложения и протестированы на видеоматериалах, полученных беспилотным летательным средством.Документ Розробка програмного забезпечення для автоматизації програмування пристроїв із ЧПК(НТУ "ХПІ", 2015) Глібко, Олена Анатоліївна; Гречка, Ірина Павлівна; Мінаков, Андрій ПетровичНа підставі теорії комп’ютерного зору для автоматизації та прискорення програмування прнетрів з числовим програмним керуванням розроблена програма, що автоматично генерує керуючий код, готовий для використання на фрезерувальному обробляючому комплексі. Розглянуто особливості створення коду керуючої програми для чорнового та чистового фрезерування деталей з подальшим аналізом створених геометричних моделей процесу різання для корегування траєкторії руху інструменту в напрямку висотної координати для запобігання небажаного зрізу матеріалу в процесі обробки.